До создания «универсального» ИИ человеческого уровня пока что очень далеко – многие ведущие мировые ученые об этом говорят в пику алармистским высказываниям таких людей, как Илон Маск или Стивен Хокинг. Я сошлюсь на Яна Ле Куна, главу ИИ в Facebook.
Если резюмировать его позицию и мнения других ведущих экспертов, современные решения очень хорошо решают очень узкие задачи, в которых либо есть огромные обучающие выборки, либо есть ограниченное количество вариантов (как, например, в игре Го) для перебора.
Для того, чтобы получить действительно универсальные решения, нужен подход, в рамках которого ИИ сможет формировать модель мира и принимать решения на основе не только данных, но и этой модели мира, включающей в себя факты, связи между ними и правила, по которым объекты взаимодействуют друг с другом.
При этом есть еще проблема, которая получила название «теоремы об отсутствии бесплатных завтраков». Теорема гласит, что любой алгоритм при повышении эффективности на одной задаче теряет эффективность при решении других задач. Одним из следствий этой теоремы является то, что «общий», «универсальный» или «сильный» ИИ в принципе требует другого уровня производительности со стороны чипов.
Поэтому для таких практических задач, как анализ текста, впереди еще много нерешенных задач даже на уровне железа. Один из таких барьеров мы попытаемся преодолеть в ходе технологического конкурса Up Great по взаимному обучению ИИ и человека.
Куда делась часть 1?
КТОНИТЬ ВИДИТ ЭТО? ^)
https://vc.ru/u/436018-maksim-fedorov/105874-udalili-dovolno-kachestvennyy-kontent-hochetsya-pod-skrinom-razmestit-svoy-kamment
АХ АДМИНЫ ШУТНИКИ :)