{ "author_name": "Редакция vc.ru", "author_type": "self", "tags": ["\u043f\u0430\u0440\u0442\u043d\u0435\u0440\u0441\u043a\u0438\u0439","advertising","\u0438\u043d\u0442\u0435\u0440\u043d\u0435\u0442_\u0432\u0435\u0449\u0435\u0439","\u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0437\u0430\u0446\u0438\u044f","\u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0437\u0430\u0446\u0438\u044f_\u043f\u0440\u043e\u0446\u0435\u0441\u0441\u043e\u0432","sap","iot"], "comments": 5, "likes": 17, "favorites": 18, "is_advertisement": true, "section_name": "default", "id": "21048", "is_wide": "1" }
8 622

«Дешевле роботов, надежнее людей»

Как автоматизировать работу на складе с помощью обычной камеры

Поделиться

В избранное

В избранном

Управление складскими операциями последовательно автоматизируется, в том числе благодаря технологиям «интернета вещей». Один из примеров эволюции складской работы — комплектация товара с использованием распознавания изображений. Новый подход помогает разгрузить сотрудников и сохранить качество.

На vc.ru — материал о том, как можно применить алгоритм распознавания изображений на отдельном участке склада.

Материал подготовлен при поддержке SAP.

В технологии распознавания изображений как таковой новизны нет: практически каждый смартфон умеет считывать QR-коды, а наиболее продвинутые модели могут «узнавать» лица и предметы. Однако использование и модификация этой технологии для решения производственных задач пока находится на уровне эксперимента.

Человеческий фактор исключается

Распознавание изображений на производственных объектах своему развитию обязано прежде всего требованиям безопасности: по контролю доступа на территории и в помещении, а также защиты сотрудников на потенциально опасных участках. Другая ключевая задача большинства нововведений на производстве — снижение трудоемкости.

К примеру, установка камеры у ворот склада позволяет не только фиксировать въезд и выезд транспортных средств и распознавать их номера, но и снизить нагрузку и ответственность сторожа. Если прежде он был вынужден встречать каждый проезжающий автомобиль и сверяться с транспортной накладной, то сегодня эта задача выполняется в автоматическом режиме благодаря камерам наблюдения и алгоритму распознавания номера.

На внутренних площадках склада камеры нужны не только для контроля доступа к определенным зонам, но и обеспечения безопасности людей. Например, установка тяжелого груза на верхнем ярусе хранения была проведена с нарушением норм безопасности, следовательно — в любую минуту он может упасть на находящихся внизу людей.

Такая ситуация возможна в том числе и на складах самообслуживания или в гипермаркетах, где помимо сотрудников находятся обычные покупатели. Чтобы исключить человеческий фактор и возможность инцидента, используются камера и алгоритм: в случае опасности система сделает предупреждение.

Похожую технологию используют и на железных дорогах для контроля пересечения ограничительной линии на перроне или борьбы с нарушителями — от безбилетников до «зацеперов»

В складской работе камеры чаще применяют для контроля процессов движения и размещения. Таким образом можно проследить путь товара по складу и убедиться в его целости и сохранности. Использование этих камер для частичной автоматизации и высвобождения персонала — экономически целесообразно, считают в SAP.

Новая технология, разработанная в компании, позволяет распознавать изображения на точке комплектации товара. Это может помочь в снижении трудоемкости задачи и уменьшить необходимое число сотрудников на участке.

Алгоритм надежнее человека

Обычный процесс комплектации заказа на складе выглядит так: один или несколько сотрудников с ведомостью ходят по складу и собирают содержимое «коробки». Затем сотрудник проверяет правильность комплектовки, считывая штрих-коды товаров, находящихся в коробке, и запаковывает ее.

Сценарий, который предлагает «пилотная» разработка SAP — проще. Камера, установленная на точке отгрузки товара, с помощью алгоритма распознавания изображений считывает сразу все штрих-коды товаров в коробке и автоматически проверяет правильность комплектовки.

Так высвобождается время сотрудника, который выполняет контрольную операцию, и использование дорогостоящих терминалов для считывания штрих-кодов становится необязательным. Кроме того, полученную в момент проверки «картинку» можно по требованию предъявить клиенту в случае возникновения претензий с его стороны.

Особенность испытуемого алгоритма в том, что он умеет выделять различные области в рамках одного изображения, а следовательно — за раз идентифицировать группу объектов. Оператору со сканером потребовалось бы совершить гораздо большее число действий для выполнения такой задачи.

Этот пробный шаг по автоматизации части складской работы станет лишь первым в ряду подобных, если его экономическая эффективность будет доказана. Идея может распространиться от точки комплектации заказа и дальше «вглубь» склада. Так или иначе, использование подобных IoT-технологий обойдется складу дешевле, чем роботизация линии или целого склада, и позволит снизить требования к сотрудникам склада.

Подобрать квалифицированный персонал не всегда просто и по той причине, что крупные склады бывают размещены в пределах небольшого по численности населения города. Таким образом, склад выступает в качестве основного локального работодателя и едва ли не половина трудоспособного населения города успевает в том или ином качестве на нем поработать.

В долгосрочной перспективе это может привести к снижению дисциплины труда, развитию мошеннических схем и кражам товара. В такой ситуации автоматизация складской работы положительно повлияет и на уровень контроля.

На данном этапе прототип тестируется в условиях «боевых» задач: реального оборудования и реальных грузов. Выводы о применимости технологии на складе будут выстроены на понимании экономического эффекта: дешевле ли такой комплекс, чем человек со сканирующим терминалом, и быстрее ли.

Сама по себе технология не вызывает никаких сомнений и безусловно действенна: распознавание изображений используется повсеместно — от камер над проезжей частью до потребительских мобильных сервисов.

IoT-решения легко интегрировать

Прототип по распознаванию изображений на стадии комплектации — один из модулей, которые интегрируются с системой управления складом. На базе SAP HANA Cloud Platform (SAP HCP) можно разрабатывать и другие микросервисы, объединяющиеся с базовым ядром. Также их можно подключать к различным системам.

Платформа позволяет связывать традиционные бизнес-решения с «интернетом вещей» и облачными технологиями. Преимущества облачных сервисов вполне очевидны: клиент покупает исключительно услугу, которой он планирует воспользоваться, и не тратит средства на поддержку инфраструктуры и штат специалистов. Такие решения позволяют сравнительно небольшим компаниям выйти на рынок и предлагать конкурентные решения на одинаковых условиях с известными и успешными компаниями.

Многие технологии на основе «интернета вещей» выгоднее глубокой модернизации тем, что не требуют значительных изменений в парке оборудования. В данном случае, используются уже установленные на складе камеры, но значительно расширяется спектр их применения. При этом технологии распознавания как ключевые в области обеспечения безопасности жизни людей развиваются ударными темпами, и внедрять их в бизнес-процессы с каждым годом становится все проще.

#партнерский #Интернет_вещей #автоматизация #интернет_вещей #автоматизация_процессов #SAP #IoT

Статьи по теме
«"Интернет вещей" позволяет сократить расходы на электричество на 30-60%»
Apple представила новые iOS 10, macOS и watchOS 3
{ "is_needs_advanced_access": false }

Комментарии Комм.

Популярные

По порядку

0

Прямой эфир

Приложение-плацебо скачали
больше миллиона раз
Подписаться на push-уведомления
[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "create", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-158433683", "adfox_url": "//ads.adfox.ru/228129/getCode?p1=bxbwd&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid21=&puid22=&puid31=&fmt=1&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } } ]