Оффтоп Yana Gannik
3 703

Управляем загруженностью службы поддержки с помощью машинного обучения и добрых дел

На примере банка для предпринимателей «Точка».

В закладки

Если у вас есть бизнес, связанный с обслуживанием и поддержкой большого количества клиентов, то вы знаете, как важно учитывать и уметь правильно администрировать расписания, пиковые нагрузки, время ожидания пользователей на линии.

Если вы неоптимально составили график операторов, не сумели предвидеть пиковый период обращений, не позаботились о том, чтобы пользователи могли получить ответы на свои вопросы заранее, это неминуемо приведёт к тому, что ваши клиенты будут по 10 минут слушать музыку в телефонной трубке в ожидании ответа специалиста. В результате ощущение от сервиса портится, клиенты бесятся, сотрудники поддержки в мыле и переработках, а вы сгораете от стыда.

В «Точке» обслуживают больше 100 тысяч предпринимателей, которым мы обещаем брать трубку с первого гудка и решать любую проблему за один разговор без переключений между специалистами.

Нельзя сказать, что у нас всегда получается выполнять это обещание, но мы постоянно оптимизируем работу поддержки и ищем новые способы улучшить ключевые показатели. В конце 2017 года у нас получилось сократить количество клиентских обращений на 35% в самый пиковый месяц — декабрь, при этом совершив доброе дело.

Опыт подсказывает, что в декабре случается коллапс, и все клиенты начинают звонить в поддержку по самым разнообразным вопросам. Помимо увеличения времени ожидания ответа, страдания пользователей и необходимости выводить больше людей на поддержку, мы несём дополнительные расходы, ведь каждый звонок в «Точку» стоит нам денег.

Банк для предпринимателей решил кое-что предпринять: мы проанализировали, по каким вопросам больше всего обращаются клиенты в декабре. Всё оказалось достаточно предсказуемо — это конец года, предприниматели спешат закрыть сделки, заплатить налоги, зафиксировать прибыль. Мы взяли декабрьскую статистику за прошлые годы и наложили на ситуацию в конце 2017 года, разбили обращения по портретам клиентов. Топ вопросов выглядит так:

  • как пополнить расчётный счёт;
  • хочу оплатить картой или снять деньги в банкомате;
  • как получить выписку по счёту и другие документы;
  • как и когда сделать платёж в бюджет;
  • забыл логин и пароль от интернет-банка;
  • сколько и где можно снять денег;
  • как ходят платежи в праздники.

Далее нужно было спрогнозировать на основе прошлых данных и с учётом постоянного роста и изменения клиентской базы, сколько обращений и в какие даты нам ждать.

Мы собрали статистику обращений, смоделировали рост клиентской базы и структурировали обращения по месяцам. В итоге мы получили выборку и с помощью методов машинного обучения построили прогнозную модель обращений в службу поддержки.

Для корректного прогнозирования пиковых нагрузок мы перебрали несколько методов машинного обучения, опробовав поочерёдно регрессионную модель, эволюционные алгоритмы и нейронную сеть.

Прогнозная модель по количеству обращений в поддержку «Точки» в декабре 2017 года

По прогнозному графику стало ясно, что для комфортной работы нужно сократить количество обращений в полтора раза. И мы решили заранее напомнить клиентам о самых важных делах, которые нужно сделать: написали ответы на самые частые вопросы, составили чек-лист, разбили по портретам клиентов и подготовили письма для рассылки по базе.

У нас достаточно хорошие показатели по рассылкам, как правило, открывают письма 50-60% из получивших, отвечают примерно 1-2%, проходят по ссылкам около 7%, отписываются от рассылок меньше 1% читающих.

На этом можно было бы остановиться, но мы все хорошо знаем, что прочитать простыню текста от банка, пусть даже написанную на нормальном языке, и пройти чек-лист для занятого предпринимателя, у которого почта всегда «в огне» — тот ещё подвиг. В лучшем случае письмо прочитают по диагонали с мыслью: «Всё круто, но мне некогда, поэтому, если что, я лучше потом позвоню и всё узнаю».

Мы стали думать, чем бы таким зацепить клиентов и как вовлечь в игру «Не звони мне, не звони», одновременно решив все их проблемы. Так возникла идея объявить этот месяц временем бережливости и предновогодних чудес, воззвать к искренним человеческим чувствам и предложить сделать что-то хорошее вместе.

Изначально мы собирались сократить свои расходы на поддержку, но важнее было обеспечить нормальный режим работы специалистов и сделать так, чтобы клиенты решали свои вопросы в комфортном режиме. Мы решили все сэкономленные деньги отдать в детский Благотворительный Фонд Константина Хабенского, чтобы каждый смог почувствовать причастность.

Мы написали трогательное письмо, в котором предложили свою помощь в подготовке к предновогодней суете, попросили по возможности не звонить в банк в декабре и тем самым вместе помочь тем, кому эта помощь действительно необходима.

Что мы получили

Наше письмо открыли 52% получивших. По вопросам, которые мы разъяснили в письме, в банк обратилось на 35% меньше людей, чем мы прогнозировали.

Мы сэкономили 1 млн рублей на поддержке и перевели их в Благотворительный Фонд Константина Хабенского, что позволило шести мальчикам и шести девочкам, победившим опухоль мозга, провести новогодние каникулы в реабилитационном лагере в Подмосковье, а трём семьям с такими ребятами — пройти в январе-феврале интенсивный курс семейной реабилитации в Финляндии.

Реальная картинка обращений по отношению к прогнозной выглядит вот так: на графике видно, что нам удалось довольно точно предсказать пики с помощью мат-статистики и методов машинного обучения. Реальный график получился ниже прогнозного: наши письма получились действительно искренними, а предприниматели — отзывчивыми.

А ещё мы увидели, что применение даже простых методов машинного обучения позволяет нам строить достаточно точные прогнозные модели, например, для расчёта численности сотрудников поддержки и составления графиков работы.

Фактическое количество обращений в поддержку «Точки» в декабре 2017 года

Мы с радостью отмечаем, что интеграция благотворительных механик в российский бизнес срабатывает всё чаще — это прямо указывает на рост социальной ответственности нашего общества и вовлечённость бизнеса в развитие благотворительности в России.

Результат вдохновляет — 1 млн рублей и реальные изменения в жизни 15 детей, победивших опухоль мозга. Спасибо команде банка и предпринимателям, которые откликнулись на предложение принять участие в акции. Вместе мы добьёмся того, что в ближайшие годы благотворительность станет неотъемлемой частью жизни каждого человека в нашей стране

Анна Сысоева
директор по развитию Благотворительного Фонда Константина Хабенского

Материал опубликован пользователем. Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Yana Gannik", "author_type": "self", "tags": [], "comments": 17, "likes": 36, "favorites": 1, "is_advertisement": false, "subsite_label": "flood", "id": 35356, "is_wide": false }
{ "id": 35356, "author_id": 5393, "diff_limit": 1000, "urls": {"diff":"\/comments\/35356\/get","add":"\/comments\/35356\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/35356"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199791 }

17 комментариев 17 комм.

Популярные

По порядку

Написать комментарий...
12

Модель прогноза SLA от количества обращений, числа операторов и средней длительности разговора в приближении Пуассоновского распределения была описана Эрлангом хрен знает сколько лет назад и применяется во всех системах WFM (workforce management). Зачем тут нейронная сеть, машинное обучение и прочие сложности? :)

Ответить
2

Я тоже прифигел от "мы перебрали несколько методов машинного обучения, опробовав поочерёдно регрессионную модель, эволюционные алгоритмы и нейронную сеть". Судя по прогнозу и результату достаточно было день недели и удаленность от НГ просто умножить на рост кол-ва клиентов.
Вам надо статью на хабре написать - поржём в комментах.

Ответить
2

Нам принципы подобия рассказывали в 5 классе на геометрии, но без нейронной сети сейчас никуда =).

Ответить
0

:). Ну да :). Старик Эрланг году в 1900 это придумал всё :)

Ответить
1

Авторам статьи и всему отделу, занимающемуся подобной аналитикой, советую книгу Хэмди А. Таха "Исследование операций". Там про теорию массового обслуживания достаточно подробно написано.
И да, напишите на Хабр, что вы конкретно сделали. Интересно будет обсудить :)

Ответить
3

Не кажется ли вам, что нужен просто FAQ, с которым стоит предлагать ознакомиться всем, открывающим счёт в Точке?
Обычно именно для этого и нужен "топ вопросов".

Ответить
0

что за кресло на первом фото? удобное?

вот интересно почему нет обзоров на удобные кресла для айтишников..

Ответить
2

я искать умею, как раз в этом то и фишка, что статья от 5 сентября 2012, гаджеты постоянно новые выходят, а почему "гаджеты" для спины не прогрессируют? т.е. с 2012 не выходило кресел лучше, чем в подобных обзорах старых? - без обзоров мы и не узнаем об этом

Ответить
0

ваша правда

Ответить
0

Вот поновей: https://varlamov.ru/2716946.html
Правда, это не совсем о новинках.

Ответить
0

нет обзоров на удобные кресла для айтишников..

Нет денег - маркус
Есть деньги - аэрон

/обзор

Ответить
–1

Исправлю опечатку. Нет денег -- Малькольм.

Ответить
0

У него спинка на ручках держится, в результате ручка ломается спинка отлетает.

Ответить
0

Всё равно люблю это кресло)) Гораздо удобней Малькольм.

Ответить
0

правда интересует минимальное кресло за 30 баксов?

Ответить
0

мне кажется оно дороже, по крайней мере выглядит эргономично

Ответить

Комментарий удален

0

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Нейронная сеть научилась читать стихи
голосом Пастернака и смотреть в окно на осень
Подписаться на push-уведомления