{"id":13470,"url":"\/distributions\/13470\/click?bit=1&hash=a5471878bb4d0020b0094d731712468a57a3ba05caae1b96f57d2bce7097f8ad","title":"\u041a\u0430\u043a \u0444\u0438\u043d\u0430\u043d\u0441\u0438\u0440\u043e\u0432\u0430\u0442\u044c \u0441\u043e\u0446\u0438\u0430\u043b\u044c\u043d\u044b\u0439 \u043f\u0440\u043e\u0435\u043a\u0442","buttonText":"","imageUuid":"","isPaidAndBannersEnabled":false}

Чем запомнился 2017 год в области искусственного интеллекта: краткий обзор Статьи редакции

Тренды машинного обучения прошедшего года от издания WildML, которые показывают, как ИИ входит в технологическую сферу.

Системы искусственного интеллекта обошли человечество в человеческих играх

В 2017 году системы, основанные на алгоритмах обучения с подкреплением (один из способов машинного обучения, при котором система обучается, взаимодействуя с некой средой или моделью среды и получая от неё ответные сигналы), несколько раз обыграли людей в сложные игры.

Разработанный Google алгоритм игры в го AlphaGo продолжил побеждать сильнейших игроков мира и научился вырабатывать стратегию игры самостоятельно — без анализа сыгранных человеком партий. Эта версия системы получила название AlphaGo Zero.

В декабре 2017 года Google рассказала об обобщённой версии алгоритма — Alpha Zero, — которая не предназначена для какой-то конкретной игры. На вход система получает правила игры и в ходе обучения самостоятельно вырабатывает тактику. Он успешно обучилась шахматам, го и сеги и обыграла лучшие алгоритмы в каждой из игр.

В университете Карнеги — Меллон разработали алгоритм Libratus, который обыграл ведущих игроков в покер на 20-дневном турнире по техасскому холдему. Система DeepStack, созданная учёными из Карлова университета в Праге, Чешского технического университета и Альбертского университета, чуть ранее также смогла обыграть человека в покер. Оба этих алгоритма играют в хедс-ап — вид покера, при котором в игре участвуют только два человека.

В 2018 году, пишет WildML, алгоритмам предстоит освоить игры на несколько игроков. Принадлежащая Google компания DeepMind занимается разработкой системы для игры в Starcraft 2, а команда OpenAI, которой уже удалось достичь успехов в игре в Dota2 один на один, собирается вскоре показать систему для игры пять на пять.

Возвращение эволюционных алгоритмов

Эволюционные алгоритмы в машинном обучении применяют для решения задач принципы и процессы естественного отбора и мутации, описанные в биологии. К ним относятся, например, генетические алгоритмы, которые комбинируют нужные параметры возможными способами в поисках оптимального решения задачи.

В 2017 году разработчики из OpenAI продемонстрировали, что такие алгоритмы могут достичь показателей, сравнимых с обучением с подкреплением. Команда исследователей из Uber рассказала о разработанных ими системах на базе эволюционных алгоритмов, которые обучились играть в игры от Atari.

Системы синтеза речи

Основная тенденция 2017 года, по мнению WildML, — отход от сложных рекуррентных и свёрточных архитектур для синтеза речи, обучение которых занимает большое количество времени, и переход к системам с использованием механизма внимания — подхода, при котором детально обрабатывается лишь часть входных данных. Это снижает затраты на обучение систем и позволяет использующим их компаниям получать хорошие результаты при меньшей стоимости.

Год инструментов

Свои инструменты для разработчиков в 2017 году представили многие крупные компании — Google, Facebook, Apple, Microsoft и другие. Краткий список:

  • PyTorch — библиотека глубокого обучения от Facebook.
  • Tensorflow 1.0 — новая версия популярного фреймворка глубокого обучения от Google.
  • CoreML — библиотека машинного обучения для мобильной разработки.
  • Pyro — язык программирования систем глубокого обучения, разработанный командой исследователей из Uber.
  • Gluon — API для систем машинного обучения от Amazon.
  • Michelangelo — внутренняя библиотека глубокого обучения для команд внутри Uber.
  • Roboschool — платформа для обучения роботов, разработанная проектом OpenAI.
  • Baselines — набор из нескольких моделей для обучения с подкреплением от OpenAI.
  • Tensorflow Agents — платформа для обучения алгоритмов с подкреплением от Google.
  • Unity ML Agents — инструмент для создания и обучения игровых алгоритмов обучения с подкреплением от Unity.

Курсы и лекции по машинному обучению

С ростом количества инструментов выросло и количество ресурсов для изучения технологий искусственного интеллекта и машинного обучения, пишет WildML.

  • Проект OpenAI вместе с Калифорнийским университетом в Беркли провёл мероприятие Deep RL Bootcamp с лекциями, посвящёнными обучению с подкреплением.
  • Весной 2017 года Стэнфордский университет обновил свой курс по применению свёрточных нейронных сетей для визуального распознавания данных.
  • Зимой 2017 года Стэнфордский университет обновил курс по обработке естественного языка при помощи глубокого обучения.
  • Стэнфордский университет опубликовал курс по моделям и теориям глубокого обучения.
  • Coursera опубликовала курс по глубокому обучению.
  • В Монреале прошла летняя школа по глубокому обучению и обучению с подкреплением.
  • Калифорнийский университет в Беркли представил курс по глубокому обучению с подкреплением.
  • Google провела конференцию Tensorflow Dev Summit для разработчиков, работающих с алгоритмами машинного обучения.

Применение искусственного интеллекта в медицине

Среди успехов 2017 года: алгоритм, разработанный учёными из Стэнфорда, научился выявлять рак кожи у пациентов. Другая группа исследователей из того же университета представила систему, которая способна определять нарушения в работе сердца (аритмию) по ЭКГ с большим успехом, чем кардиолог.

Применение в искусстве

В конце 2016 года Google представила алгоритм Quick, Draw, который угадывает, что хотел нарисовать пользователь. А в 2017 году показала нейронную сеть AutoDraw, которая дорисовывает его наброски.

Значительный прогресс, считает WildML, в 2017 году показали GAN — генеративно-состязательные сети. Такие модели построены на базе двух нейронных сетей, одна из которых предлагает возможные варианты решения, а другая — отбрасывает неподходящие. Они могут генерировать изображения и фотографии, высказывания и так далее. Уже вскоре, полагает автор материала, они смогут решать серьёзные задачи.

Самоуправляемые автомобили

Крупные компании продолжают разработку систем автопилота для автомобилей: такими технологиями занимаются Uber, принадлежащая Google команда Waymo, такси-сервис Lyft, Tesla. К декабрю 2017 года самоуправляемые автомобили от Uber наездили по дорогам 2 млн миль (около 3,2 млн километров). Наличие разработок в этой области подтвердила и Apple.

Интересные проекты на базе ИИ

Редакция WildML отдельно выделила несколько примечательных разработок на базе алгоритмов искусственного интеллекта, которые были опубликованы в 2017 году. Некоторые из них:

  • Алгоритм для удаления или изменения фона изображения.
  • Приложение MakeGirlsMoe для создания аниме-персонажей.
  • Алгоритм для раскрашивания чёрно-белых фотографий.
  • Нейронная сеть для игры в Mario Kart.
  • Инструмент для выявления фальшивых картин на базе алгоритмов глубокого обучения.
  • Приложение, которое воссоздаёт предмет по рисунку.
  • Система, в которой алгоритмы занимаются созданием собственного языка для общения.
  • Алгоритм для улучшения качества фотографий.

Наборы данных для обучения

Открытые наборы размеченных данных для обучения моделей на базе искусственного интеллекта опубликовали команды YouTube, Google (рисунки QuickDraw, набор изображений с совершающими определённые действия людьми AVA, набор голосовых команд, музыкальных отрывков), DeepMind, сервис вопросов и ответов Quora.

Hardware-войны

В 2017 году лидер рынка Nvidia представила флагманскую видеокарту Titan V, но конкуренты, пишет WildML, не собираются уступать. Разработкой собственного «железа» занялась Tesla, новые чипы представили Intel и Google. Ведутся разработки и в Китае, где популярность видеокарт выросла на фоне увлечения майнингом криптовалют.

Громкие заголовки

«То, о чём пишут СМИ, почти никогда не соответствует тому, что на самом деле происходит в исследовательской лаборатории», — пишет WildML. В качестве примера издание приводит разработку IBM Watson, создатели которой серьёзно озаботились продвижением технологии в медиа, а система при этом не показала сколько-то значимых результатов.

В августе 2017 года СМИ обратили внимание на алгоритмы искусственного интеллекта Facebook, создавшие собственный язык для общения друг с другом. Некоторые издания опубликовали заметки, в которых рассказали, что ИИ от Facebook «вышел из-под контроля», и из-за этого ботов пришлось отключить. «Исследователи просто прекратили эксперимент, который не дал нужных результатов», — объясняет WildML.

Инвестиции

  • Microsoft приобрела стартап в сфере глубокого обучения Maluuba.
  • Google купила сообщество для исследователей в области машинного обучения Kaggle.
  • Японская SoftBank приобрела производителя роботов Boston Dynamics.
  • Facebook приобрела стартап по разработке виртуального помощника Ozlo.
  • Samsung выкупила команду проекта Fluently и представила голосового помощника Bixby.
  • Компания Mythic привлекла $8,8 млн на разработку ИИ-чипов.
  • Стартап Elemant AI, который занимается платформой для разработки решений на базе ИИ, привлек $102 млн.
  • Команда проекта по разработке автопилота Drive.ai привлекла $50 млн.
  • Платформа для создания ИИ-приложений Graphcore привлекла $30 млн.
  • Компания Appier получила $33 млн инвестиций.
  • Компания Prowler.io, которая занимается разработкой алгоритмов принятия решений, привлекла $13 млн.
  • Стартап по медицинской диагностике на базе ИИ Sophia Genetics привлёк $30 млн.
0
1 комментарий
Rasul Tokhniyazov

Дарья, спасибо за содержательный и интересный материал!

Ответить
Развернуть ветку

Комментарий удален модератором

Развернуть ветку
Читать все 1 комментарий
null