{"id":11244,"title":"\u0420\u0430\u0437\u0431\u0438\u0440\u0430\u0435\u043c\u0441\u044f, \u043b\u043e\u043f\u043d\u0435\u0442 \u043b\u0438 \u0440\u044b\u043d\u043e\u043a \u0418\u0422 \r\n ","url":"\/redirect?component=advertising&id=11244&url=https:\/\/vc.ru\/promo\/353949-razbiraemsya-lopnet-li-rynok-it&placeBit=1&hash=d208029863fe4571a57bd41458f0ed509048b262392aaffae456a4ea928923a5","isPaidAndBannersEnabled":false}
Сервисы
FutureComes

Сервис недвижимости: как мы с помощью адаптивного UI и машинного обучения с нуля привели на сайт более 85000 посетителей

The Meters – стартап в сфере поиска недвижимости, который изначально планировался как инвестиционный помощник. В итоге сервис вырос в полноценную площадку по поиску квартир в Москве и Санкт-Петербурге. Как это произошло – читайте в кейсе.

В виду интереса к инвестициям, площадка сохранила часть функционала до сих пор. При просмотре объявления о покупке квартиры, например, пользователь видит средние показатели доходности конкретного варианта, а также сравнение цены с рыночной за схожие характеристики. Еще The Meters показывает пользователям среднюю стоимость аренды выбранного ими варианта.

Проект пришел к нам во Future Comes на этапе сырого продукта, было много пробелов и недоработок, которые было необходимо заполнить: нужно было переработать дизайн и код, проект использовал старую версию фреймворков, а структура в коде отсутствовала.

Приоритетной задачей стала разработка масштабируемой архитектуры сервиса, чтобы проект мог легко наращивать новый функционал с выходом следующих релизов. Был составлен план доработок:

  • Экран поиска —> формат списка
  • Переработка поиска на карте
  • Редизайн и переработка карточек объектов
  • Оптимизация поиска: сохранение параметров поиска, добавление в избранное, отсечение дублей с площадок
  • Создание панели для выгрузки файлов с данными и работы с аналитикой.

Все изменения и обновления мы разрабатывали опираясь на результаты опросов реальных пользователей и потенциальной целевой аудитории.

Работа над UI

Перед началом работы с UI мы провели опросы о процессе поиска жилья среди потенциальной ЦА. Мы опросили жителей Москвы и Петербурга в возрасте от 25 до 35 лет. Большинству неудобно следить за объявлениями на нескольких площадках сразу, из-за этого подходящие варианты часто уходят из-под носа. Также многие упоминали посредственную эффективность фильтров на других площадках. А сортировать объявления в социальных сетях нельзя в принципе, поэтому приходится смотреть всё подряд, а на это уходит много времени.

На основании опроса мы поняли, что людям удобнее просматривать все объявления на одном ресурсе и желательно с возможностями кастомизации структуры, чтобы сузить диапазон поиска. Мы полностью пересмотрели интерфейс и бэкенд, расширили функционал и плотно занялись обучением ИИ, чтобы объявления фильтровались максимально качественно. Положительную динамику использования площадки можно было наблюдать в режиме реального времени, по мере реализации нововведений.

  • Разработали сохранение поиска и избранных квартир
  • Добавили порядка 10-ти новых фильтров, влияющих на поисковую выдачу
  • Добавили сортировку по рейтингу объявлений на основе ИИ
  • Разработали авторизацию, которая позволяет привязать к аккаунту сохраненный поиск и избранные квартиры.

Дальше начали работу со страницей поиска. На превью объявления вывели:

  • Первоисточник объявления
  • Бейджи, помогающие принять решение: инвестиционный потенциал квартиры, построенный на ИИ
  • Отображение отклонения фактической цены квартиры от рыночной
  • Прогноз аренды, также построенный на ИИ. Отображает примерную сумму, которую можно получить при сдаче объекта в аренду.

Также добавили экран поиска объектов на карте со следующим функционалом:

  • Кластеризация объектов на карте
  • Цветовые индикаторы квартир
  • Разметка зоны поиска
  • Фильтрация как на странице поиска.

Корректировки

После первого релиза, чтобы лучше понимать направление развития, провели сбор обратной связи. Это позволило:

  • Переместить фокус на ключевую аудиторию
  • Прогнозировать сроки выхода проекта на прибыль
  • Ускорить разработку
  • Составить список потенциальных задач для будущих релизов.

Система сбора информации также обновилась – ускорили процесс обработки ошибок парсеров и визуализировали его на дашборде. Также добавили возможность создания очереди файлов на загрузку, которая дала возможность вручную и автоматически загружать файлы в базу данных из нескольких источников.

Для более точного поиска мы проделали обширную работу с алгоритмами ИИ, это позволило повысить результативность поиска и удовлетворить запросы ЦА, исходя из результатов опроса и «болевых точек». В следующем разделе мы немного углубимся в процессы обучения ИИ, но без сложной технической информации. А также поговорим о том, как решались проблемы, с которыми столкнулась наша аудитория и мы сами.

Расширение функционала ИИ

  • Добавили анализ текста: теперь в карточки объявлений на сайте автоматически подтягиваются параметры из описания. Например, про доступность квартиры жильцам с детьми и/или животными
  • Добавили автоматический анализ изображений и возможность фильтровать объявления по качеству и цвету ремонта
  • Доработали алгоритмы оценки доходности и средней цены квартиры по рынку
  • Добавили алгоритм оценки качества инфраструктуры вокруг объекта: наличие школ, детских садов, магазинов, больниц, парков и транспортных развязок.

Процесс обучения ИИ и нейросетей

Многие думают, что ИИ и нейросети в буквальном смысле поглощают всё, что им дают датасаентисты и отбирают из этого лучшее самостоятельно, но работает это не совсем так. При обучении нейросетей нужно тщательно сортировать информацию и перебирать множество комбинаций, чтобы свести погрешность к минимуму.

Для качественного обучения нужны качественные датасеты, для их составления требуется тщательная сортировка и систематизация информации. Также исходные данные должны быть приведены к общему виду и чем полнее перечень исходных данных, тем лучше будут результаты соответственно.

Еще одним важным параметром является размер выборки, чем больше вариантов проанализирует нейросеть, тем опытнее она станет и повысит свою результативность. Тут же стоит учитывать количество параметров анализируемых нейросетью объектов, в нашем случае их много: площади, комнатности, цены, локации и т.д.

Таким образом, чем больше структурированных и подробных датасетов нейросеть потребит, тем меньше будет погрешность. В нашем случае первый алгоритм дал SMAPE на уровне 70%, то есть если аренда квартиры стоит 50 тыс. рублей, алгоритм давал оценку в районе 15-75 тыс. Дальше было много проб и ошибок, разные специалисты, разные технологии – мы экспериментировали. Итоговый результат получился на уровне 12%, что уже намного лучше.

Монетизация

В данный момент мы вместе с The Meters исследуем и прорабатываем возможные стратегии монетизации проекта, некоторые из них уже реализованы:

  • Платный доступ к API/аналитике
  • Платная подписка с расширенными функциями
  • Услуги по подбору и анализу вариантов жилья – раздел “Виртуальный риелтор»
  • Партнерства с компаниями-перевозчиками, клинингами и локальными бизнесами
  • Помощь в оформлении документов, партнерства с юридическими компаниями.

Планы на ближайшие полгода

  • Выпустить опрос для более простого поиска квартиры
  • Выпустить первую версию личного кабинета для пользователей
  • Переработка кода для оптимизации работы сайта и масштабируемости
  • Запуск вспомогательных услуг от оффлайн команды
  • Внедрение дополнительных функций для удобства пользователей.

Результаты

Результатом сотрудничества Future Comes и The Meters стал успешный переход от «сырого продукта» к «работающему решению» по поиску недвижимости, которое помогает людям в Москве и Петербурге. Более 50% посетителей площадки использует умные фильтры при поиске, это влияет на количество времени, требующегося на поиск жилья и, соответственно, на проведенное время на сайте.

Находить подходящие варианты стало легче и быстрее, об этом говорит статистика (мы сравнивали показатели первых месяцев сотрудничества и актуальные показатели): благодаря продуктовым апдейтам и новым фильтрам удалось увеличить количество визитов почти в 8 раз, а общее количество визитов за весь период работы — 130.000.

Вместе с количеством визитов выросли показатели глубины просмотра – количество страниц, просмотренных пользователем в течение одного сеанса. Также удалось снизить количество отказов с 41.8% до 27.6% – всё меньше людей покидают сайт, не пробыв на нем и 15 секунд.

Время пребывания на сайте возросло почти в 3 раза.

Вместе с развитием нейросетей и обновлениями UI будет сокращаться количество времени, затрачиваемого на поиск подходящего варианта жилья пользователями The Meters. Команда работает над тем, чтобы сделать процесс поиска наиболее адаптивным и удобным. Также со временем будет появляться больше дополнительных услуг, которые помогут избежать бюрократических сложностей и ошибок, связанных с арендой и покупкой недвижимости.

Слышали ли вы о THE METERS до этого или может вы уже искали квартиру через этот сервис? В комментариях можно задать интересующие вас вопросы команде разработчиков или поделиться своими комментариями по использованию сервиса.

0
9 комментариев
Популярные
По порядку
Написать комментарий...
Надежда Карклина

Очень интересный кейс, интересно, планируется ли выход в регионы. Такой сервис может быть полезен во многих городах-миллионниках... Особенно студентам, которые приезжают учиться в более крупные города - с жильем всегда проблемы...

Ответить
5
Развернуть ветку
Кирилл Кузнецов

"Более 50% посетителей площадки использует умные фильтры при поиске"… "Добавили порядка 10-ти новых фильтров, влияющих на поисковую выдачу"… Понятно. Позовите юиксера в команду, ну и вообще умных людей.

Ответить
1
Развернуть ветку
FutureComes

Каждый новый фильтр конкретизирует твою поисковую выдачу и экономит время, так как ты не смотришь нерелевантные варианты. Часть этих фильтров можно выставить вручную (например, если вы хотите рядом с домом фитнес с бассейном и ВкусВилл), а часть вшивается автоматически в поиск (большинство этих фильтров направлены на скрытие сомнительных квартир из поиска или дубликатов). То есть увеличение количества фильтров не нагружает пользователя, а наоборот делает процесс поиска удобным.
А новые фильтры и условия поиска внедрялись исходя из исследований аудитории, так как над проектом работала команда разработчиков и дизайнеров, соблюдающих все правила design thinking.

Ответить
0
Развернуть ветку
Кирилл Кузнецов

И тем не менее, больше половины людей считает что ваши умные фильтры работают неправильно. А нужен всего-то data driven…

Ответить
0
Развернуть ветку
Alex Levadniy

В статье не раскрыт заголовок статьи. Каким макаром вы привели 85000 людей дополнительно, переделали фильтры?

Ответить
1
Развернуть ветку
FutureComes

Мы привлекали пользователей с помощью таргетированной рекламы, сообществ о недвижимости и локальных досок объявлений об аренде квартир. Но динамику по привлечению пользователей (с помощью сарафанного радио в том числе) и по их возвращению на сайт можно было заметить в момент больших продуктовых изменений: изменений главного экрана и добавления фильтров (об этих изменениях написано в материале).

Ответить
0
Развернуть ветку
Ivan Kramarchuk

Про ИИ только много раз написано, что он есть. Можно детали? Какие критерии использовали, какой фреймворк, какие особенности?

Ответить
0
Развернуть ветку
Читать все 9 комментариев
hh.ru усилил продуктовое направление новым составом топ-менеджеров

В hh.ru провели реорганизацию продуктового направления. В начале 2022 года на ведущие роли в продуктовый блок hh.ru вышли опытные российские менеджеры с богатой продуктовой экспертизой российских и зарубежных технологических компаний, а в ближайший год компания планирует нанять свыше 100 сотрудников разного уровня в продуктовое развитие и…

Как оценивать дизайн: Метод 3К, ч. 1

Раскладываем процесс оценки разрабатываемого дизайна на систему вопросов.

Дизайн-джем #47: концептуальная фотография, шоурил Radugadesign, шоты Geex Arts, бытовая живопись и правила композиции

Креативно выходим из январской спячки с дизайн-командой red_mad_robot.

Самые популярные направления доставки в 2021 году

Мы подвели первые итоги 2021 года и рассказываем, куда россияне чаще всего отправляли и откуда получали посылки и письма в ушедшем году.

Как увеличить эффективность клиентских рекламных кампаний: решение для рекламных агентств

В условиях высокой конкуренции на рекламном рынке, медиаагентствам все сложнее получить клиента и предложить что-то яркое, что выделит их на фоне крупных игроков. В таком случае нужно искать креативные подходы к медиапланированию и экспертно обосновывать свои решения. Тут на помощь агентствам приходят рекламные технологии, базирующиеся на…

Самое неприятное — попасть под массовую блокировку IP-адресов

Технические директора ИД «Комитет», «Бумаги», Independent Media и «Нашего Радио» — об IT-поддержке онлайн-изданий, выборе инфраструктуры и технологических вызовах для медиа.

Ozon запустил сервис Ozon Profit — в нём можно заработать на выполнении простых задач для маркетплейса Статьи редакции

За 4-6 часов работы в день — около 20 тысяч рублей в месяц.

Что посмотреть про ИТ в TikTok? Рассказываем, как снимаются шутки про работу айтишников

Делимся кейсом: как найти свою аудиторию в TikTok и зачем это нужно крупной ИТ-компании.

Доходы Yota от роуминга выросли в 1,6 раз

Ковидные ограничения стали испытанием для мобильных операторов, которые недополучили доход от роуминга в 2020 году. В Yota в 2020 году выручка от роуминга сократилась в два раза по сравнению с 2019 годом.

null