Jam Agency
18

Как сегментировать рекламные кампании на 85 регионов и управлять ими в eCommerce?

В закладки

Ранее исследовали, как уровень жизни и популярность бренда в регионе влияют на конверсию и средний чек. В этот раз расскажем, как с помощью метода ABC-анализа сегментировать регионы и оптимизировать рекламные кампании

Входные данные

Коротко напомним суть исследования. Клиент — большой e-commerce проект, работающий по всей России. Проблема: при одинаковых по всем регионам ценах и сайте есть заметная разница в среднем чеке, а конверсия между некоторыми регионами отличается в разы. Мы предположили, что это может быть связано с популярностью бренда и размером средней заработной платы в конкретном регионе.

Были рассчитаны коэффициенты корреляции между перечисленными величинами и связь подтвердилась. Далее расскажем как применить эти данные на практике

Сегментирование регионов

В первую очередь регионы нужно разделить на сегменты, на основе популярности бренда и уровня средней заработной платы. Исходная таблица с данными выглядит так:

Разброс достаточно большой, как по популярности, так и по зарплатам, поэтому сразу разбить данные по группам не получилось, нужно привести данные «к общему знаменателю». Для этого вводим дополнительные коэффициенты:

  • К бр — отношение индекса популярности бренда в конкретном регионе к среднему значению индекса популярности бренда
  • К зп — отношение средней заработной платы в конкретном регионе к средней заработной плате по РФ
  • К рег — «региональный коэффициент», рассчитанный на основе К бр и К зп, с учетом их «силы» воздействия на конверсию

На основе «регионального коэффициента» уже можно сегментировать регионы, но это не единственная величина, которую мы хотели учесть. Еще один важный показатель – объем выручки по региону.

По каждому критерию выделено три группы, к которым относятся регионы

Коэффициент региона

  • K рег ≥ 1,2 — группа А
  • 1,2 > K рег ≥ 0,8 — группа В
  • K рег < 0,8 — группа C

Объем выручки

  • Выручка ≥ 5 млн. — группа А
  • 5 млн. > Выручка ≥ 0,5 млн — группа В
  • Выручка < 0,5 млн — группа C

Далее каждый регион получает соответствующую маркировку, сначала для каждого критерия отдельно, затем общее значение. На этом сегментация регионов закончена.

Результаты

Всего получилось 9 сегментов, далее опишем каждый из них подробно: какие сегменты представлены и как работать с ними с точки зрения контекстной рекламы.

Преимущества такого подхода к сегментированию

  • Возможность использовать разные стратегии ведения рекламных кампаний в разрезе регионов — это может быть получение максимального объема трафика (так как высокая конверсия позволяет иметь высокую CPC) или максимизация прибыли.
  • Получать однородные показатели по конверсии и среднему чеку внутри сегмента — это позволяет в ручном режиме точнее управлять ставками и корректировками ставок (меньший разброс в эффективности между различными параметрами — тип устройства, демографические группы и т.д.).
  • Повышается эффективность автоматических стратегий, так как алгоритм быстрее и точнее обучается на однородных показателях.
  • Исключить регионы, работающие в убыток, или наоборот применить общую стратегию направленную на исправление ситуации

Метод достаточно простой и эффективный, кроме принципов ABC-анализа демонстрирует и «закон Парето 20/80» — позволяет выявить 20% действий, которые могут принести до 80% целевого результата.

Рассказывал

Дмитрий Котенджи
Senior PPC в 1jam.ru

Видео по теме

{ "author_name": "Jam Agency", "author_type": "self", "tags": [], "comments": 0, "likes": 0, "favorites": 0, "is_advertisement": false, "subsite_label": "unknown", "id": 135181, "is_wide": true, "is_ugc": true, "date": "Mon, 22 Jun 2020 08:50:14 +0300", "is_special": false }
Право
Товарные знаки для тех, кто ведёт бизнес в интернете: защищаем домен, управляем отзывами и контролируем конкурентов
Казалось бы, регистрация брендов в Роспатенте — это история про заводы и предприятия: вот наша одежда, еда или…
Объявление на vc.ru
0
Комментариев нет
Популярные
По порядку

Комментарии