(function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(93790508, "init", { defer: true, clickmap:true, trackLinks:true, accurateTrackBounce:true }); ym(93790508, 'hit', window.location.href);

Суперкомпьютер HPE Spaceborne-2 отправляется на МКС. Зачем он там?

На международную космическую станцию отправляется HPE Spaceborne-2 — высокопроизводительный компьютер, приспособленный к специфическим условиям МКС. Зачем устройство космонавтам — рассказываем в материале Selectel.

Компьютер отправляют на станцию не столько для экспериментов, сколько для реальной помощи космонавтам — на орбите проводится много экспериментов, для которых нужна высокопроизводительная вычислительная система.

Кстати, первая версия системы тоже побывала в космосе. Это случилось в 2017 году — тогда компьютер был отправлен на МКС компанией Илона Маска SpaceX. Разработчики сделали вычислительную систему устойчивой к широкому спектру негативных внешних факторов, которых так много за пределами Земли.

Первая модель базировалась на системах класса HPE Apollo 40 c высокоскоростной коммутационной сетью, в качестве программной платформы использовался Linux. Также было разработано специальное ПО с учетом условий на орбите. Например, системное ПО управляло отладкой систем компьютера в режиме реального времени, учитывая возможные ошибки, вызванные внешними условиями. Компьютер охлаждался при помощи водяной системы. Для того, чтобы попасть на МКС, компьютеру пришлось пройти 146 сертификаций и испытаний на безопасность.

При этом первая модель не выполняла научные расчеты, не использовалась она и на благо самой космической станции. Ее задачей было просто нормально функционировать в условиях орбитальной станции — нужно было доказать, что она надежна и не подведет астронавтов. Конфигурационно система состояла из двух серверов HPE Apollo 40, объединенных сетью InfiniBand со скоростью 56 Гбит/с. Каждый сервер включал 4 ускорителя NVIDIA Tesla P100, что дало возможность довести производительность системы до 1 Тфлопс.

А что там со вторым поколением?

Основой нового космического компьютера стала конвергентная платформа для периферийных вычислений HPE Edgeline EL4000. Вычислительные узлы — серверы HPE ProLiant DL360 последнего поколения с двумя процессорами Intel Xeon Cascade Lake и ускорителями NVIDIA T4. Производительность новой системы составит 2 Тфлопс.

Планируется разместить две стойки с EL4000 и DL360. Все данные дублируются между стойками. SSD, используемые для хранения данных, аппаратно и программно объединены в RAID-массивы. Да, накопители менее устойчивы к условиям космической радиации, но они более быстрые. Кстати, у первой системы к концу эксплуатации из 20 дисков в рабочем состоянии осталось 11. У астронавтов будет запас SSD, так что накопители в случае выхода из строя можно будет быстро заменить.

Для связи между собой оба модуля будут использовать сеть 10GbE. Питание выведено в две независимые линии, подключенные к солнечным батареям и аккумуляторам. Также предусмотрено ступенчатое динамическое регулирование уровня энергопотребления. Охлаждение уже не только водяное, а гибридное. Теплообменник в стойке подключается к водному контуру охлаждения МКС.

Плюс ко всему, вычислительный блок будет использоваться уже для выполнения научных и прикладных задач. Это, например, первичная обработка данных в сжатые сроки, что позволит не ожидать результатов вычислений с Земли. Кроме того, планируется вести мониторинг наземного трафика из космоса с выявлением различных паттернов. Вести наблюдение МКС будет и за воздушным и космическим трафиком, включая режим реального времени.

Кроме того, компьютер будет вести мониторинг здоровья астронавтов. Анализироваться будет все, включая рентгеновские снимки и сонограммы. Это дает возможность предотвратить заболевание до того, как оно разовьется. Космическая система будет взаимодействовать с наземными вычислительными центрами.

Если космический компьютер покажет себя хорошо, он сможет остаться на МКС на постоянной основе. Кроме того, сейчас разрабатывается и проект периферийного микро-ЦОД, который будет размещаться на специализированных спутниках-модулях.

Систему отправят на МКС 20 февраля. Доставит ее на станцию 15-ая грузовая экспедиция Northrop Grumman. Срок эксплуатации системы — 2-3 года.

Подписывайтесь на блог Selectel, чтобы не пропустить интересные новости.

0
2 комментария

Комментарий удален модератором

Развернуть ветку

Комментарий удален модератором

Развернуть ветку

Комментарий удален модератором

Развернуть ветку
Илья Попов

Зачем  водяное и гибридное охлаждение? Можно охлаждать жидким азотом. Думаю, что намного просто и эффективнее.

Ответить
Развернуть ветку
ilyakm

в таком холоде система вряд ли сможет нормально работать

Ответить
Развернуть ветку

Комментарий удален модератором

Развернуть ветку
-1 комментариев
Раскрывать всегда