{"id":11170,"title":"\u041a\u0430\u043a \u0437\u0430\u043c\u043e\u0442\u0438\u0432\u0438\u0440\u043e\u0432\u0430\u0442\u044c \u0438\u0433\u0440\u043e\u043a\u043e\u0432 \u0442\u0440\u0430\u0442\u0438\u0442\u044c \u0434\u0435\u043d\u044c\u0433\u0438","url":"\/redirect?component=advertising&id=11170&url=https:\/\/vc.ru\/promo\/341559-korotko-uvelichit-prodazhi-cherez-sobstvennoe-prilozhenie&placeBit=1&hash=7a5df0ef2aad1850664a44a9e406536cb9a26738c002b57db0ec8a963322865f","isPaidAndBannersEnabled":false}

«Тинькофф» запустила бесплатный сервис для «расшифровки» чеков Статьи редакции

Сервис поможет бизнесу составить статистику и прогноз метрик продаж по клиенту, рассчитывают в компании.

«Тинькофф» запустила сервис для бизнеса для обработки текстовой информации из чеков ReceiptNLP, сообщил vc.ru представитель компании.

Сервис может найти в тексте название бренда, определить категорию товара, расшифровать сокращённое название и распознать продукт. Например, если в чеке написано «Бонаква 0,5», то сервис определит, что это вода, а сокращение «сиб кол пельм» — это пельмени «Сибирская коллекция».

ReceiptNLP использует нейросети и «находится в постоянном развитии», уточнил представитель компании. Сервис поможет бизнесу составить статистику или прогноз продаж по каждому клиенту, оценить вероятность смены бренда или магазина. Кроме того, сервис пригодится компаниям, которые обещают пользователям кэшбек на определённый бренд, категорию или товар — ReceiptNLP поможет распознать в чеке нужные позиции.

Среди первых партнёров проекта — производитель касс и несколько ОФД, рассказали в компании. «Тинькофф» получает от партнёров обратную связь и дорабатывает сервис. «Получается общий рыночный стандарт — так всем удобнее», — объяснили в компании. Сама «Тинькофф» использовала сервис для исследований трат россиян в магазинах.

«На основе ReceiptNLP мы дальше будем делать сервисы-алгоритмы, показывающие магазину и бренду, где он теряет в продажах и какие товары и промо нужно предлагать клиенту», — добавил представитель «Тинькофф».

0
33 комментария
Популярные
По порядку
Написать комментарий...
Ярослав Моисеев

Интересно как это реализовано технически? Я имею ввиду, в какой момент и каким устройством производится считывание чека. И зачем магазинам эта информация, разве у них нет статистики по продажам позиций, не понятно...

Ответить
7
Развернуть ветку
Алексей Щербаков

Мне кажется, это попытка нормализовать номенклатуру. Если посмотреть как пишут в разных сетях/магазинах, то там тот еще зоопарк. Поэтому вспоминая недавнюю новость от одного из ОФД, что предоставляют анализ по рынку, то без подобной нормализации тяжело его провести.

Ответить
3
Развернуть ветку
Aleksandr Gurov

Это большая проблема для российского ритейла в целом. Сейчас нет общепринятой структуры категорий товаров. Не говоря о том, чтобы классифицировать конкретные SKU. Мы проводим дискуссии с ритейлом по этому вопросу.

Ответить
7
Развернуть ветку
Вася Пражкин

Я так понимаю, дискуссия с ритейлом проходят примерно так:
- Дяденька из Ленты, давайте формализуем названия категорий и товарных позиций.
- Уйди мальчик, не до тебя сейчас.

Ответить
16
Развернуть ветку
Michael Smith

Ну поговорили же

Ответить
0
Развернуть ветку
Aleksandr Gurov

Ритейлеры заинтересованы в читаемом написании, поскольку мы для них дополнительная точка контакта с покупателем. Ритейлеры через нас делают коммуникацию промо , например, cash back на фрукты и овощи, чтобы расширить число категорий покупателя и увеличить РТО

Ответить
0
Развернуть ветку
Ярослав Моисеев

Понял, звучит логично)

Ответить
0
Развернуть ветку
Aleksandr Gurov

Наши клиенты получают кассовые чеки в МБ Тинькофф. Эти чеки полностью соответствуют 54-ФЗ. Например, наш клиент может вернуть товар в магазине, если покажет чек с нашего приложения.

Таким образом, у нас достаточно чеков, чтобы производить их обработку с помощью машинного обучения.

Ответить
5
Развернуть ветку
Тимофей Иванов

nlp возможно намекает на natural language processing. обычно там нейросеть используют

Ответить
1
Развернуть ветку
Алексей Дымов

Я бы реализовывал, как получение данных от ОФД через сканирование куара + реквизитов вокруг него + дополнение распознанием текста 

Ответить
0
Развернуть ветку
Denis Denis

У них большая база чеков по их карточкам.

Ответить
0
Развернуть ветку
Andre Macareno

чисто от балды, но мне кажется, что с большей вероятностью я бы с таким наименованием купил царские сырки, нежели бюст

Ответить
3
Развернуть ветку
Aleksandr Gurov

Также выжно, чтобы это была реальная строчка из чека. А не придуманный пример из головы. 
Чем крупнее сеть, где вы получили чек — тем лучше мы его распознаем. Чем известнее производитель — тем лучше мы его определим.

Ответить
6
Развернуть ветку
Николай Белоусов

Сервис-угадайка получается

Ответить
1
Развернуть ветку
Alexey Sokolov

ОФД уже получают данные в электронном виде, при этом понятия не имеют о том, что скрывается под наименованиями, которые указываются в различных вариациях. У одних магазинов одни названия и сокращения, у других - другие. В итоге на один товар с легкостью получаются сотни вариантов. 
Мы решали задачу для одного из крупных ОФД по приведению названия из чека к каноническому виду, а так же отнесение к одной из 3 тыс. категорий еще 2,5 года назад. В основе так же лежал NLP.

Ответить
4
Развернуть ветку
Анон Плиз

Как обычно с бесплатным сыром будет? Работайте бета-тестерами бесплатно, а когда сетка обучится и сторонние продукты будут по самые помидоры завязаны на ней - включат счетчик

Ответить
4
Развернуть ветку
Nik Luchnikov

Не проще ли считывать номенклатуру из QR кода?

Ответить
3
Развернуть ветку
Владислав Прищепов

Ну такое.
Проверил сложные для восприятия человеком строки из реальных чеков - магии не случилось.

Ответить
1
Развернуть ветку
Mark Rapida Gromov

а реальные расшифровки есть?

Ответить
2
Развернуть ветку
Сергей Лебедев

Ну второй чек это Чоко Пай, скорее всего

Ответить
4
Развернуть ветку
Konstantin

Первый: "Фрекен Бок", пакет для мусора с затяжкой, синий.

По второму согласен с Сергеем, но заметьте - бренд какой-то "оранж" вместо "Орион")

Ответить
3
Развернуть ветку
BearStrikesBack

Выглядят как хреново написанные регулярки. Зачем тут им NLP ума не приложу. Уж легче номенклатурную базу поддерживать в ручном режиме. Магазинные базы не часто меняются.

Ответить
0
Развернуть ветку
Aleksandr Gurov

С помощью регулярки не распознаешь, что в строчке из чека «Бонаква 0,5», товар — вода. Это как один из примеров, зачем использовали NLP.

Ответить
1
Развернуть ветку
алекс с

Много же магазинов, сотни тысяч

Ответить
0
Развернуть ветку
Mihael Isaev

И делается это для того, чтобы составить портрет всех и каждого для каких-то нехороших целей в будущем

Ответить
1
Развернуть ветку
Sergei Timofeyev

А толку? ОФД запрещено предоставлять информацию по позициям в чеке. Только сумму и категорию.

Ответить
–1
Развернуть ветку
Nik Luchnikov

То есть наименование продукта не передается по вашему?

Ответить
1
Развернуть ветку
Sergei Timofeyev

Не знаю, но закон запрещает это отдавать. 

Ответить
0
Развернуть ветку
Анна Каренина

А json можно преобразовать в читабельный вид в этом сервисе? А то номенклатура в джейсоне, а налоговая этот формат не понимает

Ответить
0
Развернуть ветку
Aleksandr Gurov

Напишите, пожалуйста, удобный формат на receipt@tinkoff.ru

Ответить
0
Развернуть ветку
Alexey Trofimov

Интересно. Как разметку делали?

Ответить
0
Развернуть ветку
Мария Андреева

Я приложением Чекгуру для анализа расходов пользуюсь, там товары из чеков распределяются по категориям и подкатегориям как-то автоматически. Но тоже не всегда в нужную категорию попадают.

Ответить
0
Развернуть ветку
Роман Поликов

Кхм, результат применения обычного word2vec на данных о совместной встречаемости товаров в чеках, далее с классификацией (k-means или аналогичной) по доступному всем каталогу товаров GS-1. Неужели все ОФД в РФ настолько деревянные, что не могут это сделать сами и готовы отдавать свои чеки в Тинькофф за бесплатно?

Ответить
0
Развернуть ветку

Комментарий удален

Развернуть ветку
Читать все 33 комментария
Исследование: как бизнес преодолел кризис в 2021 году, часть первая

Мы провели исследование российского рынка и посмотрели, как чувствовал себя бизнес в 2021 году. Аналитики компании выяснили, что, благодаря смягчению коронавирусных ограничений, рынок стал постепенно восстанавливаться и выходить на докризисные показатели.

Говорит Москва: Yota определила самые общительные регионы России в 2021 году

Yota проанализировала количество и продолжительность телефонных звонков своих пользователей, а также объем использованного мобильного трафика за 2021 год в разных регионах страны. Таким образом мобильный оператор определил самые «звонящие» и «качающие» регионы.

Bank of America раздаст свои акции почти всем сотрудникам, потому что во время пандемии люди стали чаще увольняться Статьи редакции

Одни поняли, что устали работать в офисе, другим больше пришёлся по духу фриланс — поэтому корпорация решила удерживать их бонусами.

Позитивные результаты Ericsson смогли повлиять на Nokia

Несмотря на потерю доли рынка в Китае, прибыль Ericsson за IV квартал 2021 года приятно удивила. Возросший спрос на поставку оборудования 5G в Европу, Северную и Латинскую Америку увеличили чистую прибыль компании на 40%, и она достигла $1,1 млрд. Фондовый рынок моментально отреагировал на новости от Ericsson – акции Nokia возросли на 1,46%.

Как сгореть заживо за 700 руб

Aliexpress, OZON, Yandex, DNS, Eldorado нам нужно серьезно поговорить.

Boston Dynamics договорилась о первых поставках своих роботов-грузчиков для складов — заключила сделку на $15 млн с DHL Статьи редакции

Роботы будут работать на складах DHL в Северной Америке.

Робот-грузчик Boston Dynamics.
Что такое АДР и ГДР: чем отличаются от акций, что предпочесть инвестору
«Тинькофф» отказывает в предоставлении услуги, включённой в тариф

Привет! У банка Тинькофф Банк есть тариф для ИП "Профессиональный" с абонентской платой около 5к в месяц, там же в описании включена услуга "Бухгалтерское обслуживание" (на данном тарифе бесплатно).

Тред: работники рассказывают, как сбегали в первый же день и не возвращались Статьи редакции

Часто такое встречается среди молодёжи и на неоплачиваемых стажировках.

Очистка репутации застройщика, девелопера, объекта

Здравствуйте! Вы тут, потому что у вас есть проблемы с online-репутацией. Если это не так – не читайте дальше.

null