Полезная help-ссылка для работы с данными

Привет, читатель. Меня зовут Рушан Сюрмаков. Я делаю «Нейрон», проект, где рассказываю о машинном обучении, искусственном интеллекте и data science. И делаю так, чтобы всё это стало понятно.

В закладки

Представляю вам главную help-ссылку для работы с данными. Материал в «Google Документе» подойдёт как профессионалам, так и тем, кто только учится работать с данными. Пользуйтесь и прокачивайте навыки сами и делитесь с коллегами.

Дальнейшее описание публикации — содержание ссылки. Поэтому можете сразу ознакомиться с документом. Либо начать с его содержания, которое прикрепляю ниже.

Конечно, список книг, сервисов, видео и лекций в файле неполный. Поэтому предлагаю сделать эту публикацию ценнее — добавляйте в комментарии свои самые полезные ссылки. Самые крутые из них я добавлю к себе в файл.

Книги по ML и DS

В этом разделе собрал книги, которые помогут освоить математику, статистику, анализ данных, некоторые языки программирования и машинное обучение.

  • «Глубокое обучение на Python». В данной книге о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями.
  • «Машинное обучение и TensorFlow». Новички в машинном обучении оценят прикладную направленность этой книги, ведь её цель — познакомить с основами, чтобы затем быстро приступить к решению реальных задач.
  • «Создаём нейронную сеть». Эта книга представляет собой введение в теорию и практику создания нейронных сетей. Она предназначена для тех, кто хочет узнать, что такое нейронные сети, где они применяются и как самому создать такую сеть, не имея опыта работы в данной области.

Применение DS и ML по отраслям

Этот раздел не нуждается в представлении. Он со списком блокнотов и библиотек ML и Data Science для разных отраслей промышленности. Все коды на Python и размещены на GitHub. Они будут полезны как для расширения кругозора, так и для запуска своего интересного стартапа.

  • RobotChef — совершенствование рецептов еды на основе отзывов пользователей.
  • Food Amenities — прогнозирование спроса на пищевые продукты с использованием нейронных сетей.
  • Recipe Cuisine and Rating — предсказание названия кухни любого блюда на основе списка его ингредиентов.

Полный список блокнотов по отраслям.

Полезные курсы

В этом разделе собраны курсы и лекции по анализу данных, математике, data science и machine learning.

  • Deep Learning School. Школа глубокого обучения — кружок от ФПМИ МФТИ, рассчитанный на старшеклассников, интересующихся программированием и математикой, а также студентов, которые хотят начать заниматься глубоким обучением. Занятия ведут студенты Физтех-школы прикладной математики и информатики МФТИ.
  • Введение в Data Science и машинное обучение. Разбор центральных понятий и тем. Знакомство с такими методами машинного обучения, как деревья решений и нейронные сети. Плюс практическая часть курса, посвящённая знакомству с наиболее популярными библиотеками для анализа данных: Pandas и Scikit-learn.
  • Введение в теорию нейросетей и глубокое обучение. Этот курс даёт представление о современном положении дел в теории нейросетей. Рассмотрены полносвязные и свёрточные нейросети на примерах задач классификации и поиска объектов на изображениях.

Полный список курсов и лекций.

Подробка датасетов

Полный список датасетов.

Полезные ноутбуки

Полный список полезных ноутбуков.

Дайджесты новостей по ML и DS

Отфильтровав большое количество источников и подписок, собираю для вас все наиболее значимые новости из мира машинного обучения и искусственного интеллекта: дайджест за июнь, за июль, полный обновляемый список новостных дайджестов.

Больше информации о машинном обучении и data science — на моём Telegram-канале «Нейрон». Не пропускайте будущих статей.

Дополнительно напомню: добавляйте в комментарии свои самые полезные ссылки, крутые добавлю к себе в файл. Делитесь своими историями обучения, лайфхаками и знаниями.

Всем успехов и знаний!

Сделать файл обновляемым?
Да, несомненно! Новинки всегда нужны.
Нет, материалов для изучения достаточно.
Показать результаты
Переголосовать
Проголосовать

Материал опубликован пользователем.
Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Рушан Сюрмаков", "author_type": "self", "tags": ["\u043c\u0430\u0448\u0438\u043d\u043d\u043e\u0435\u043e\u0431\u0443\u0447\u0435\u043d\u0438\u0435","datascience"], "comments": 0, "likes": 9, "favorites": 32, "is_advertisement": false, "subsite_label": "ml", "id": 81476, "is_wide": true, "is_ugc": true, "date": "Mon, 02 Sep 2019 15:43:01 +0300", "is_special": false }
0
{ "id": 81476, "author_id": 217512, "diff_limit": 1000, "urls": {"diff":"\/comments\/81476\/get","add":"\/comments\/81476\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/81476"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 332941, "last_count_and_date": null }
Комментариев нет
Популярные
По порядку
{ "page_type": "article" }

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "Article Branding", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "cfovx", "p2": "glug" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Баннер в ленте на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "disable": true, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ] { "page_type": "default" }