Когда мы говорим о бенчмаркинге LLM в какой-то предметной области, то имеем в виду две разные концепции: бенчмарки моделей LLM и бенчмарки систем LLM. Бенчмаркинг моделей LLM заключается в сравнении базовых моделей общего назначения (например, GPT, Mistral, Llama, Gemini, Claude и так далее). Нам не следует вкладывать ресурсы в их сравнение, потому что: 1. Для них существуют публикуемые таблицы лидеров, 2. В использовании этих моделей существует множество нюансов (например, изменчивость модели, промт, сценарий использования, качество данных, конфигурация системы), что снижает полезность обсуждения их высокоуровневых параметров, 3. Важнее точности модели могут быть другие факторы: локальность данных, соответствие требованиям защиты конфиденциальности, поставщик облачных услуг, степень возможности кастомизации (например, fine-tuning или повторного обучения).