Для начала мы стали анализировать готовые технологии. Мы моделировали распознавание кругов при помощи адаптивной бинаризации и выравнивания яркости изображения (т.е. преобразование в черно-белый вариант), преобразования Хафа (Hough Circle). Эти технологии не показали высоких результатов, т.к. круги низкоконтрастные и отделять пиксели круга от фона и различных шумов (тени, блики, посторонние объекты) сохраняя точность измерений практически невозможно. Нами также рассматривался вариант использования нейронной сети для обработки изображений. Но в данном случае, использование геометрических методов должно обеспечить большую точность поскольку форма объектов заранее известна.
Добрый день! Измерения программой как-то зависят от диаметра самой чашки? Что является эталоном? Если будет новый поставщик чашек с размерами, которые будут отличаться от текущих, - не повлияет ли этот факт на размерность получаемых данных?
Добрый день!
Размер чашки в данном случае не имеет существенного значения. В нашем алгоритме мы можем задать различные геометрические параметры: например, максимальный размер кругов (для оптимизации) или размер подложки.
Ограничения заключаются только в том, что при увеличении размера наблюдаемой области мелкие детали сложнее обнаружить, поскольку их размер в пикселях становится меньше, что особенно существенно для надписей на таблетках.
Если требуется распознавать тип таблетки в таком случае, то может потребоваться установка отдельной камеры или использование смартфона с качественной камерой