Tableau, Qlik Sense и Power BI – что выбрать?
Любая компания нуждается в инструментах для анализа и визуализации больших данных. Поделимся опытом практического сравнения при работе с лучшими инструментами для визуализации, таких как Tableau, Qlik Sense и Power BI.
Не секрет, что, в настоящее время, любая компания в значительной степени полагается на большие данные и скрытую в них информацию, чтобы иметь возможность понимать текущие тенденции и бизнес-сценарии, для принятия адекватных и обоснованных решений в будущем. Следовательно, это делает необходимым наличие хорошего инструмента бизнес-аналитики для анализа и визуализации.
Для того, чтобы понять, какой инструмент лучше применить для конкретной задачи, необходимо четко определить, какие потребности заказчика он должен в первую очередь удовлетворить. Однако, в любом случае, инструмент должен иметь возможность анализировать, обрабатывать и представлять данные в удобной для восприятия форме и разработан таким образом, чтобы каждый пользователь, независимо от его опыта и навыков, мог научиться использовать его, как любое другое ПО или приложение, используемое ежедневно. (уточнение: это не десятитысячный мануал, это описание опыта нашего коллеги)
Мне пришлось поработать с тремя такими инструментами — Tableau, Qlik Sense и Microsoft Power BI. Все они объявлены ведущими инструментами бизнес-аналитики в рейтинге компании Gartner — Magic Quadrant Gartner for Business Intelligence and Analytics Platform.
Tableau — популярный и функциональный продукт.
Он обладает широкими возможностями визуализации с хорошо проработанным графическим интерфейсом. В нем есть несколько встроенных модулей аналитики, которые могут использоваться пользователем напрямую для обработки своих данных.
Кроме того, он дает возможность разрабатывать объекты приложений, настраивать динамические визуальные эффекты и распространять отчеты и документы среди других пользователей через Интернет.
Qlik Sense — более простой интерактивный инструмент визуализации данных, который позволяет пользователям импортировать и агрегировать данные из различных источников больших данных. Они могут также использовать инструменты визуализации данных программного обеспечения для преобразования RAW данных в значимую информацию.
Microsoft Power BI — собственное средство визуализации данных от Microsoft, что добавляет ему определенные конкурентные преимущества, поскольку он лучше всего совместим с облачной средой Microsoft. Кроме того, можно подключиться к Excel для импорта данных и создания персонализированных информационных панелей (dashboard).
В чем же основные различия между Power BI, Tableau и Qlik Sense?
По возможности визуализации:
Power BI — наиболее простая в использовании платформа, которая позволяет пользователям импортировать данные из различных источников и использовать их с диаграммами, графиками и таблицами для их визуализации. Позволяет интегрировать данные из всевозможных источников, в том числе Hadoop, локальные файлы или облачные источники.
Qlik Sense – обеспечивает более динамичную визуализацию по сравнению с конкурентами за счет уникального механизма хранения данных в оперативной памяти, основанного на ассоциации логических таблиц, определенных в прикладной задаче. При этом важно, что при изменении данных в источнике, перестройка ассоциаций осуществляется на системном, а не на прикладном уровне платформы, что и является предпосылкой для высокого качества визуализации.
Главное преимущество Tableau – простота использования без ущерба для графики и визуализации. С легкостью интегрирует данные из многих источников, которые могут размещаться как в памяти, так и подгружаться непосредственно из источника, если их объем слишком велик. По мнению Gartner этот продукт «самый привлекательный и интуитивно понятный инструмент визуализации».
* По возможности расширения базовой аналитики
Power BI: поддерживает визуализации на основе языка R. Кроме того, он предоставляет расширенные функции анализа, такие как прогнозирование, кластеризация и деревья решений.
Qlik Sense: не поддерживает объекты на основе R или Python – это существенный минус. Однако компания обещает обеспечить языковую поддержку в следующих версиях. В настоящее время использование таких функций, как регрессия, кластеризация и прогнозная аналитика, осуществляется через API-интерфейс сторонних приложений.
Tableau: обеспечивает полностью интегрированную поддержку R и Python. Также в него встроены собственные модули для кластеризации и прогнозирования.
* По облачным возможностям
Power BI совместим с Microsoft Azure. Если мы хотим использовать облачные возможности на настольном компьютере, необходимо иметь облачную учетную запись, чтобы делиться информацией и визуализациями в облаке.
Qlik Sense предлагает облачный продукт типа SaaS. Однако статистика использования свидетельствует о большей популярности серверной версии по отношению к облачному решению.
Tableau совместим с популярными облачными платформами, такими как Microsoft Azure, Amazon Web Services и т. д. Можно использовать облачные возможности продукта либо через управляемую облачную систему Tableau, либо через стороннюю облачную платформу.
* По объему хранимой информации
Перечисленные платформы не бесплатные, но у каждой системы есть возможность применения бесплатных локальных аккаунтов, но с ограниченными возможностями..
Power BI: стандартная подписка позволяет хранить данные в облачном хранилище объемом 10 ГБ. Если мы хотим увеличить емкость хранилища данных, потребуется внести дополнительную плату.
Qlik Sense: лимиты подписки Qlik Sense Cloud Business позволяют использовать 500 ГБ облачного хранилища данных для каждой рабочей группы.
Tableau: онлайн-подписка предлагает в общей сложности 100 ГБ хранилища данных в облаке.
Наряду с этими тремя крупными игроками на рынке есть еще много других хороших профессиональных приложений.
Примерами популярных программных продуктов для работы с большими данными являются:
- SAP HANA
- Sisense
- Google Charts
- Cluvio
- KlipFolio
- SPSS от IBM
Таким образом, объявить один инструмент лучшим для визуализации больших данных — непростая задача, поскольку все они могут предложить что-то уникальное и разработаны для определенной цели. Тем не менее три рассмотренных программных продукта по совокупности характеристик вероятно являются лучшим выбором при решении задачи визуализации больших данных.