Архитектор, логист и строитель. Кто и как приходит в Data Science

Евгений Ломизе — одна из самых известных ИТ-персон России. Это он придумал Яндекс.Директ и уже двадцать лет руководит отделом рекламных технологий в Яндексе. При этом Евгений крупный специалист по истории Византии и закончил исторический факультет МГУ.

В том, что касается карьеры в Data Science, похожие истории встречаются нередко. Люди приходят в Data Science с совершенно разным опытом, часто переучиваясь уже после тридцати лет.

Зайти в мир Data science можно из любой профессии, даже насквозь гуманитарной. Конечно, придется освоить математический аппарат и программирование, но опыт в прошлой сфере будет только плюсом. Ведь Data Science — это не отдельная наука или профессия, а скорее инструмент, который применяют в самых разных сферах.

Если вы готовы изучать математику как язык, чтобы излагать мысли строго, то у вас все получится, даже если вы гуманитарий.

Иван Ямщиков,

Академический директор магистратуры «Наука о данных»

Из архитектуры в Data Science

Александр Погудин, Data engineer в Epoch8.co

«Прежде чем прийти в IT-сферу в принципе, я пару лет делал архитектурные макеты. Не было такого, что я приклеил очередной фонарный столб к макету и решил: «Хочу работать в датасаенсе». Просто меня изнутри дожрал вопрос: «А что, собственно, дальше?». Я ушел и полгода думал о том, что имеет перспективы, что востребовано, и где платят. Ну и всё-таки что хоть немного интересно.

В результате я пришёл в мир данных как тестировщик VR-игр. А потом как-то плавно стал тестировать платформу для этих игр и чтобы облегчить себе жизнь, начал учиться Питону и автоматизировал какие-то тесты. Потом какие-то из этих тестов облегчили жизнь другим сотрудникам. Потом были другие компании и проекты, где я уже всерьез занимался данными.

Мне нравится, что здесь всегда есть, чему учиться, куда расти и где становиться круче. Я тут уже три года и до сих пор продолжаю слышать какие-то новые слова. Но при этом научиться этому не невозможно».

Из логистики в Data Science

Олеся Криндач, дата саентист в госкомпании:

«По образованию я менеджер ВЭД, закончила Всероссийскую академию внешней торговли, факультет внешнеторгового менеджментa. Некоторое время работала по специальности, но работа оказалась скучной, а европейское направление, которым я занималась, схлопывалось. Нужно было либо учить китайский, либо что-то менять. Я резко сменила профессию, поступила в магистратуру и затем перешла в программирование, а оттуда в Data Science.

Год сидела переучивалась, дотягивала математику и базу программирования. Я стала сеньором с перспективой вырасти в тимлида. Очень помогал навык общения с людьми. Многие программисты не умеют общаться, а у меня в логистике общения было даже слишком много. Еще английский помог — если бы в ВАВТ так не вдалбливали язык, было бы трудно работать с англоязычными статьями».

Еще раз из логистики в Data Science

Станислав Дидух, business intelligence-консультант в Clouds on Mars

«Я работал в отделе планирования цепочек поставок у международного ритейлера. В тот момент у нас начал формироваться отдел аналитики и так как там ещё не было сформированной команды, то я начал помогать с построением и автоматизацией периодических отчётов и дашбордов. Мне очень нравилась работа с данными и решение различных задач, которые с этой работой связаны: очистка данных, конструирование новых признаков, data mining и т.п. Менеджмент это заметил и мне предложили перейти на фултайм должность аналитика данных.

Немного позже, начав работать с Python, я открыл для себя машинное обучение. С помощью аналитики данных и машинного обучения нам удалось оптимизировать многие логистические процессы и решить наболевшие проблемы. Очень пригодились знания Data Science, когда грянула пандемия. Наши физические магазины закрылись, работал только E-commerce, из-за чего системы прогнозирования не справились и сошли с ума. Пришлось в краткие сроки разрабатывать временный движок для прогнозирования.

Огромным плюсом стал мой бэкграунд в бизнес-среде в целом и в логистике в частности. Очень важно понимать, какие процессы и факторы стоят за цифрами на экране и что хотят увидеть люди, для которых мы готовим отчёт. Директор по транспорту и финансовый контролер могут иметь очень разные вопросы к данным и во время презентации результатов проекта желательно иметь ответы для обоих. Это практически невозможно без базовых знаний в сфере».

Из строительства в Data Science

Алексей Андреев, специалист в Epoch8.co

«Мой друг-разработчик часто рассказывал, какие крутые штуки они делают. Мне тоже всегда хотелось заниматься программированием, да и в строительстве в моем городе не было никакого развития. Так что я решил освоить новую специальность.

Больше всего меня заинтересовало машинное обучение. Начинал изучать сам, потом увидел бесплатный вводный курс в анализ данных на Python. Двухнедельный спринт мне очень понравился, и я решил пройти весь курс, который длится полгода. Закончив курс, я сразу начал искать работу и через несколько собеседований меня взяли в Epoch8. Весь процесс обучения и трудоустройства занял менее года.

Опыт в строительстве помогает и в новой профессии. Инженерное образование дало хорошие математические здания, а обследование конструкций и зданий привило способность подмечать мелкие детали».

Первый шаг в Data Science. Как начать карьеру

Даже если вы десять лет строили карьеру в гуманитарной сфере, это не закрывает вход в мир больших данных. Хоть и путь этот не будет простым. И первый же барьер на входе в профессию — это обилие курсов и информации. Всего этого так много, что новичку сложно выбрать первый шаг. Надо ли сразу учить Python? А какую математику? Всегда есть риск, что новичок потратит время впустую.

Математические знания точно необходимы хотя бы для того, чтобы понимать, как работают модели и будут ли они применимы для вашей задачи. Математическую базу для data science можно сравнить с минимумом по математике, который дается на первых двух курсах технических специальностей.

Для предобработки и предварительного анализа данных необходимы знания по математической статистике и визуализации данных, для понимания работы классических и глубоких моделей — линейная и тензорная алгебра, для обучения и поиска оптимальных параметров модели — теория оптимизации.

Дарина Дементьева,

PhD, Skoltech

Главным образом в мир данных ведут два пути: быстрый через курсы и более долгосрочный через магистратуру.

Курсы позволяют быстро освоить нужные инструменты, но не закладывают теоретическую базу. Выпускники получают хорошие практические навыки, а вот разбираться в той же математике им придется самостоятельно. Это быстрый вход в Data Science, потому что компании готовы брать таких новичков и доращивать под себя. Но без глубокого понимания профессии есть риск так и остаться на начальной позиции исполнителя.

Магистратура длится дольше, около двух лет. За это время обучающиеся осваивают нужные инструменты и гораздо глубже погружаются в теорию. Большой плюс в том, что информации много и она структурирована. Параллельно с учебой уже можно устраиваться на позицию джуниора, а благодаря мощной базе специалисту будет проще расти дальше.

Среди абитуриентов онлайн-магистратуры «Наука о данных» мы видим не только аналитиков, разработчиков, продактов, но и людей с мощным бэкграундом в других сферах: финансы, нефтегаз, право, телеком, энергетика и другие. Отраслевая экспертиза — это всегда преимущество для начинающего специалиста в Data Science. Это то, что поможет выпускнику стать уникальным специалистом.

Наша же задача — подготовить профессионалов с большим потенциалом карьерного роста для самых разных сфер. Поэтому в магистратуре мы даем не только знания, но и системный подход, погружаем студентов в командную работу над реальными кейсами под руководством ведущих экспертов-практиков, развиваем навыки коммуникации с коллегами и заказчиками.

Дарья Гриц, директор по работе с вузами SkillFactory

55
4 комментария

О, очень хороший и вдохновляющий материал, спасибо :)

Ага а теперь давайте возьмите после обучения к себе же в мейл груп. Только не лучших, которые и так знали кучу всего, да еще и были мидлами или сеньорами в других языках, а именно из неайтишных перепрофиленцев 

Андрей, отвечу достаточно подробно:

Наше ключевое отличие - проектное обучение. Почему мы так много говорим об этом и считаем его киллерфичей? Вот почему 👇🏻

🌶 Мы создаем условия для долгосрочной работы с реальным внешним заказчиком - вы завершаете обучение с более глубоким и серьезным портфолио и с большей вероятностью переходите внедрять свое решение в команду ментора.

У нас есть пул менторов, которые работают со студентами в течение всех 2 лет обучения. Если студент нравится ментору и студенту нравится ментор, то студент может продолжить работать с ментором после окончания магистратуры. Наш выпускник сможет собрать портфолио не из разрозненного списка учебных задач, а из понятных продуктовых задач под потребности конкретного заказчика. Одна из целей магистратуры - сделать внедрение. Оценки “Отлично” будут заслуживать такие проекты, когда предложенная магистрантом модель или решение будут внедрены в компании. И внедрять это решение будет наш выпускник.

🌶 Как альтернатива, вы сможете получить опыт работы с различными заказчиками (можно менять менторов и работать над задачами из разных компаний). В отличие от первой стратегии, работа с несколькими менторами это сборка более широкого портфолио. А еще это возможность найти "своего" ментора и "свою" команду за несколько попыток.

🌶 Мы погружаем студентов в особенности разработки инновационных продуктов и готовим к работе на управленческих позициях в сфере Data Science.

Мы не просто учим на проектах, а даем командный опыт продуктовой разработки на наших практикумах и хакатонах.

Мы проектируем обучение так, чтобы наши выпускники умели не только в код, но и в менеджмент. Наш выпускник сможет работать на управленческих позициях в сфере DS — компетентным проджектом/продактом: оценивать сложность задач, реалистичность фичей, адекватность сроков. Такой управленец более востребован и получает больше, чем менеджер без знания предметной области.

Дизайн обучения в магистратуре построен вокруг цели подготовить специалистов:
👉🏻 с обширным портфолио решения реальных, а не учебных кейсов
👉🏻 с качественным нетворком в среде технологических компаний
👉🏻 с продуктовым мышлением и сильными проджектовыми навыками
👉🏻 с умением находить нужную информацию и учиться, чтобы продолжать развиваться в карьерном и профессиональном плане

Ждем вас среди магистрантов :)

Я производил 2 млн пачек, зарабатывал 55 млн ₽ в год, попал в топ маркетплейсов, но всему приходит конец

В 2023 я больше всех продавал на маркетплейсах в своей товарной категории, работал со всеми крупными ритейл-сетями, а всего бизнес приносил 1,1 млрд ₽ выручки и 55 млн ₽ прибыли в год.

Теперь можно и руки вытереть, и бюджет посчитать 
7171
99
55
11
11
Прямо чистый понедельник, много нового узнал про производство бумажной продукции. Спасибо и удачи автору в начинаниях
реклама
разместить
Xiaomi показала концепт объектива, который крепится к задней части смартфона

Подключить его можно при необходимости.

2121
77
11
Сиськи класс!
Фейковый босс пишет вам: как ИИ меняет правила игры для бизнеса (и что с этим делать?)
Фейковый босс пишет вам: как ИИ меняет правила игры для бизнеса (и что с этим делать?)
«Лучше было оставить только биткоин»: что создатели Binance, Coinbase и другие криптоэксперты думают о создании крипторезерва США

Большинство против включения альткоинов.

44
11
⭐️Сколько должен стоить доллар?💸

Применяем научный подход в определении справедливого курса

⭐️Сколько должен стоить доллар?💸
1616
Фонд «Восход» вложил 305 млн рублей в российского разработчика нейроинтерфейсов Elvis

Оценка компании составила около 870 млн рублей.

Фото «Ведомости» 
1212
ЭТОТ ЧЕЛОВЕК ПРЕДСКАЗАЛ ВСЕ ПОСЛЕДНИЕ ПУЗЫРИ НА РЫНКАХ. ВОТ ЧТО ОН ДУМАЕТ ПРО 2025 ГОД
ЭТОТ ЧЕЛОВЕК ПРЕДСКАЗАЛ ВСЕ ПОСЛЕДНИЕ ПУЗЫРИ НА РЫНКАХ. ВОТ ЧТО ОН ДУМАЕТ ПРО 2025 ГОД
День 1104: средняя стоимость медицинских услуг в 2024 году выросла 8%

Собираем новости, события и мнения о рынках, банках и реакциях компаний.

День 1104: средняя стоимость медицинских услуг в 2024 году выросла 8%
55
22
11
11
[]