Fine-tuning больших языковых моделей в 2024 году

Fine-tuning больших языковых моделей в 2024 году

Не секрет, что большие языковые модели (LLM) эволюционируют с безумной скоростью и привлекают внимание всей отрасли генеративного ИИ. Корпорации не просто заинтригованы, они одержимы LLM, и в частности, потенциалом fine-tuning LLM. В исследования и разработку LLM сейчас вкладываются миллиарды долларов. Лидеры отрасли и энтузиасты технологий всё сил…

Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT (supervised fine-tuning). Для дообучения модели её необходимо предварительно обучить, а это означает, что она уже многому научилась из широкого спектра…

Как с помощью supervised fine-tuning кастомизировать LLM

Как с помощью supervised fine-tuning кастомизировать LLM

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model, LLM) под конкретные задачи. Предварительно обученные LLM (например, семейство GPT) продемонстрировали существенный прогресс в понимании и генерации языка…

Что такое supervised fine-tuning?

Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных.

Что такое supervised fine-tuning?

Разметка данных в 2023 году: текущие тренды и требования будущего

Разметка данных в 2023 году: текущие тренды и требования будущего

Разметка данных и/или аннотирование данных уже давно являются критически важным компонентом многих проектов машинного обучения и ИИ. В последние годы спрос на точную и надёжную разметку данных существенно вырос, ведь этот процесс становится всё более насущным для успеха множества проектов. Что же такое разметка данных? Как она повлияет на бизнесы?…

12 лучших инструментов аннотирования изображений на 2023 год

12 лучших инструментов аннотирования изображений на 2023 год

С развитием сферы искусственного интеллекта (AI) увеличивается и спрос на высококачественные инструменты аннотирования изображений. Аннотирование изображений — это процесс добавления в изображения метаданных, например, меток или тэгов, чтобы их было проще распознавать и выполнять по ним поиск машинам. Этот процесс критически важен для обучения моде…

9 лучших инструментов аннотирования изображений для Computer Vision

9 лучших инструментов аннотирования изображений для Computer Vision

На дворе 2023 год, но аннотирование изображений по-прежнему остаётся одним из самых трудоёмких этапов вывода на рынок проекта компьютерного зрения. В помощь вам мы составили список самых популярных инструментов аннотирования изображений.

Руководство по аутсорсингу разметки данных для машинного обучения

Руководство по аутсорсингу разметки данных для машинного обучения

Аннотирование и разметка сырых данных (изображений и видео) для моделей машинного обучения (ML) — это самая длительная и трудоёмкая, хотя и необходимая часть любого проекта компьютерного зрения.

Разметка данных: бизнес на миллиарды долларов, лежащий в основе прогресса AI

Разметка данных: бизнес на миллиарды долларов, лежащий в основе прогресса AI

Когда два года назад Лэй Ван стала аннотатором данных, её работа была относительно простой: определять гендер людей на фотографиях. Но с тех пор Ван заметила, что сложность её задач становится всё выше: от разметки гендера до разметки возраста, от рамок вокруг 2D-объектов до 3D-разметки, от фотографий при дневном свете до сцен ночью и в тумане, и т…

Andrej Karpathy: глубокие нейросети 33 года назад и 33 года спустя

Andrej Karpathy: глубокие нейросети 33 года назад и 33 года спустя

На мой взгляд, статья Янна Лекуна с соавторами Backpropagation Applied to Handwritten Zip Code Recognition (1989 год) имеет определённую историческую ценность, поскольку, насколько мне известно, это первое реальное применение нейронной сети, от начала до конца обученной при помощи обратного распространения (backpropagation). Если не учитывать кроше…

Медицинские датасеты для машинного обучения: цели, типы и способы применения

Медицинские датасеты для машинного обучения: цели, типы и способы применения

Международная система здравоохранения ежедневно генерирует множество медицинских данных, которые (по крайней мере, теоретически) можно использовать для машинного обучения. В любой отрасли данные считаются ценным ресурсом, который помогает компаниям обгонять конкурентов, и здравоохранение не является исключением.