Оценка RAG: Полное руководство по модульному тестированию RAG в CI/CD

Оценка RAG: Полное руководство по модульному тестированию RAG в CI/CD

Генерация дополненного извлечения (RAG) стала самым популярным способом предоставления LLM дополнительного контекста для создания адаптированных выходных данных. Это отлично подходит для приложений LLM, таких как чат-боты или агенты ИИ, поскольку RAG предоставляет пользователям гораздо более контекстуальный опыт, выходящий за рамки данных, на котор…

22

5 лучших фреймворков с открытым исходным кодом для оценки больших языковых моделей (LLM) в 2024 году

5 лучших фреймворков с открытым исходным кодом для оценки больших языковых моделей (LLM) в 2024 году

«У меня такое чувство, что решений для оценки LLM больше, чем проблем, связанных с их оценкой», — сказал Дилан, руководитель отдела ИИ в компании из списка Fortune 500.

11

Оценка LLM: комплексные оценщики и фреймворки оценки

Оценка LLM: комплексные оценщики и фреймворки оценки

В этой статье подробно описываются сложные статистические и предметно-ориентированные оценщики, которые можно использовать для оценки производительности крупных языковых моделей. В ней также рассматриваются наиболее широко используемые фреймворки оценки LLM, которые помогут вам начать оценивать производительность модели.

Оценка LLM: метрики, фреймворки и лучшие практики

Оценка LLM: метрики, фреймворки и лучшие практики

Дженсен Хуанг в своем выступлении на саммите «Data+AI» сказал: «Генеративный ИИ есть везде, в любой отрасли. Если в вашей отрасли еще нет генеративных ИИ, значит вы просто не обращали внимания на это».

Как оценить качество LLM модели

Как оценить качество LLM модели

В этой статье мы представим общий обзор текущего состояния исследований оценок LLM, а также расскажем о некоторых опенсорсных реализациях в этой области. Из этого поста вы узнаете:

11