Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT (supervised fine-tuning). Для дообучения модели её необходимо предварительно обучить, а это означает, что она уже многому научилась из широкого спектра…

Как с помощью supervised fine-tuning кастомизировать LLM

Как с помощью supervised fine-tuning кастомизировать LLM

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model, LLM) под конкретные задачи. Предварительно обученные LLM (например, семейство GPT) продемонстрировали существенный прогресс в понимании и генерации языка…

Что такое supervised fine-tuning?

Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных.

Что такое supervised fine-tuning?

Разметка данных в 2023 году: текущие тренды и требования будущего

Разметка данных в 2023 году: текущие тренды и требования будущего

Разметка данных и/или аннотирование данных уже давно являются критически важным компонентом многих проектов машинного обучения и ИИ. В последние годы спрос на точную и надёжную разметку данных существенно вырос, ведь этот процесс становится всё более насущным для успеха множества проектов. Что же такое разметка данных? Как она повлияет на бизнесы?…

Пять примеров успешного использования ИИ на производстве

В октябре 2019 года компания Microsoft заявила о том, что искусственный интеллект помогает производственным компаниям обгонять по показателям конкурентов: использующие ИИ производители показывают результаты на 12% лучше, чем их соперники. Поэтому мы скорее всего увидим всплеск применения технологий ИИ на производстве, а также рост новых высокооплач…

Andrej Karpathy: глубокие нейросети 33 года назад и 33 года спустя

Andrej Karpathy: глубокие нейросети 33 года назад и 33 года спустя

На мой взгляд, статья Янна Лекуна с соавторами Backpropagation Applied to Handwritten Zip Code Recognition (1989 год) имеет определённую историческую ценность, поскольку, насколько мне известно, это первое реальное применение нейронной сети, от начала до конца обученной при помощи обратного распространения (backpropagation). Если не учитывать кроше…

20+ популярных опенсорсных датасетов для Computer Vision

20+ популярных опенсорсных датасетов для Computer Vision

ИИ в первую очередь развивается благодаря данным, а не коду.

2

Опенсорсные массивы данных для Computer Vision

Опенсорсные массивы данных для Computer Vision

Модели Computer Vision, обучаемые на опенсорсных массивах данных

3

О важности датасета и о том, как сделать его лучше. Наш опыт

фото котиков из открытых источников

Мы подготовили 7 основных шагов, которые превратят набор картинок из гугла не просто в мощный базовый блок системы компьютерного зрения, но и основной инструмент по выявлению и устранению ошибок распознавания.

4

Как контролировать миллионы исполнителей: инструменты и правила «Яндекс.Толоки»

Проблема качества — одна из ключевых в краудсорсинге. Когда работаешь с удалёнными, незнакомыми тебе исполнителями, невозможно угадать, кто возьмёт очередное задание. Достаточно ли он внимателен? Хорошо ли изучил инструкцию? И вообще, это человек или робот? Мы в Яндексе используем краудсорсинг каждый день. Создавать и развивать наши сервисы помогаю…

Как контролировать миллионы исполнителей: инструменты и правила «Яндекс.Толоки»
11

Открытые источники данных для ИИ в промышленности

Консультант по промышленному интернету вещей и искусственному интеллекту компании “Цифра” Екатерина Ляпина рассказала, как оседлать волну внедрения ИИ, быстро приступить к экспериментам с использованием открытых данных и перейти к полномасштабному внедрению.

Открытые источники данных для ИИ в промышленности
15