Трибуна Саша Море
2 307

Таймлайн: Sarafan.tech

Сервис, распознающий одежду, обувь и аксессуары на фотографиях в Instagram с помощью технологий искусственного интеллекта.

В закладки

Запуск

В начале 2010-х годов весь мир бурно обсуждал будущее нейросетей и искусственного интеллекта. Мы задумали перейти от слов к делу и создать реальный продукт на основе компьютерного зрения и нейросетевых вычислений. К тому моменту нейросети уже идентифицировали подписи на документах, лица и голос. Идея распознавания одежды по фотографиям лежала на поверхности, за неё мы и ухватились.

Продукт

На первых порах мы разработали специальное мобильное приложение. По нашей задумке человек, который увидел интересный для себя образ в журнале или на улице, должен был просто сделать фотографию и загрузить её в приложение.

Система за пару секунд анализировала изображение и выдавала, в каких магазинах можно приобрести подобные предметы гардероба. Идея сработала почти сразу, но в итоге долгосрочного эффекта не имела — приложением охотно пользовались поначалу, но быстро забывали про него.

Мы решили максимально упростить процесс поиска, свести его к цепочке: «увидел — купил». Так появилась идея встроенной под фотографиями на сайтах кнопки и специального скрипта для страниц блогеров в Instagram.

Виджет с надписью «Найти такой образ» встраивается в фотографию, система анализирует изображение и выдаёт похожие варианты для покупки в интернет-магазинах наших партнёров. С подобной системой в выигрыше оказываются все. Прежде всего, пользователи сайтов, которые могут оперативно найти понравившуюся вещь и купить её по подходящей цене.

Бренды и интернет-магазины получают эффективную рекламу своих товаров, в первую очередь нативную: виджет воспринимается как полезная функция сайта. Во-вторых, за счёт того, что кнопку часто помещают на фотографиях знаменитостей и модных блогеров, мы получаем все преимущества influencer marketing — товары на виджете становятся своеобразной рекомендацией от лидеров мнений.

И наконец, прибавим ко всему этому отсутствие риска баннерной слепоты. В итоге на сайт интернет-магазина переходят пользователи, которые уже готовы к покупке. Для сайтов виджет — дополнительный вариант для монетизации фотоконтента. Каждый переход с кнопки оплачивается. При этом мы не забираем место, отведённое под баннерную и тизерную рекламу.

Виджет не раздражает читателей, полностью гармонирует с сайтом и не мешает просматривать основной контент, как всем надоевшие всплывающие поверх текста окна. Посмотреть, как работает виджет на сайте Cosmo.ru можно здесь или здесь.

Команда

Изначально команда Sarafan.tech состояла только из разработчиков. Позднее компания стала разрастаться. Сегодня в Sarafan.tech работают около 20 человек, в числе которых группа продвижения, разработки и технической поддержки.

Продвижение

На первых этапах мы наращивали базу потенциальных партнёров. Сейчас продолжаем использовать уже испробованные методы: посещаем форумы и саммиты, питчимся, участвуем в нетворкингах и конкурсах, выступаем в качестве экспертов. Крупные затраты на продвижение не закладываем, ориентируемся на b2b2с.

Монетизация

Сервис Sarafan работает по модели оплаты за переходы (СPC) для fashion-, brand- и ecommerce-индустрии. На одной стороне системы продавцы, на другой — медиаплощадки и блогеры. Магазины получают таргетированный трафик и новых покупателей, медийные площадки и блогеры — оплату за переход подписчика на страницу бренда, а сам сервис — комиссию.

Метрики в динамике

Сейчас к партнёрской программе Sarafan подключены более ста сайтов и около тысячи блогеров из России и ближнего зарубежья. Для продвижения сервис используют около пятидесяти магазинов. В 2017 году партнёром Sarafan стал международный издательский дом Independent Media. В рамках партнерства виджет Sarafan был установлен на страницах одного из самых крупных fashion-сайтов России — www.cosmo.ru.

В скором времени к платформе Sarafan будут подключены и другие проекты холдинга Independent Media: «Домашний очаг», Harper's Bazaar, Grazia и Esquire. На стадии согласования партнёрство и с другими медиа-домами России и Европы.

Планы

Мы продолжаем развивать наш проект. Как и любая нейросеть, Sarafan непрерывно обучается и совершенствуется: качество распознавания растёт в геометрической прогрессии, демонстрируя все более точные результаты.

Сейчас нейросеть проанализировала более 18 млн фотографий товаров, и эта цифра растёт с каждым новым кликом. Но в проекте не только техническое совершенствование продукта и расширение функциональности, мы планируем выходить на новые рынки США и Европы.

В январе 2018 года мы открыли офис компании в Нью-Йорке, в перспективах — представительство в Лондоне. В общем, планов много, перспективы захватывают, установка — бежать вперед со скоростью Усэйна Болта.

Прогноз

#стартапы

{ "author_name": "Саша Море", "author_type": "editor", "tags": ["\u0441\u0442\u0430\u0440\u0442\u0430\u043f\u044b"], "comments": 17, "likes": 19, "favorites": 1, "is_advertisement": false, "subsite_label": "tribuna", "id": 37156, "is_wide": true }
00
дни
00
часы
00
мин
00
сек
(function(){ var banner = document.querySelector('.teaserSberbank'); var isAdsDisabled = document.querySelector('noad'); if (!isAdsDisabled){ var countdownTimer = null; var timerItem = document.querySelectorAll('[data-sber-timer]'); var seconds = parseInt('15388' + '59599') - now(); function now(){ return Math.round(new Date().getTime()/1000.0); } function timer() { var days = Math.floor(seconds / 24 / 60 / 60); var hoursLeft = Math.floor((seconds) - (days * 86400)); var hours = Math.floor(hoursLeft / 3600); var minutesLeft = Math.floor((hoursLeft) - (hours * 3600)); var minutes = Math.floor(minutesLeft / 60); var remainingSeconds = seconds % 60; if (days < 10) days = '0' + days; if (hours < 10) hours = '0' + hours; if (minutes < 10) minutes = '0' + minutes; if (remainingSeconds < 10) remainingSeconds = '0' + remainingSeconds; if (seconds <= 0) { clearInterval(countdownTimer); } else { timerItem[0].textContent = days; timerItem[1].textContent = hours; timerItem[2].textContent = minutes; timerItem[3].textContent = remainingSeconds; seconds -= 1; } } timer(); countdownTimer = setInterval(timer, 1000); } else { banner.style.display = 'none'; } })();
{ "id": 37156, "author_id": 81289, "diff_limit": 1000, "urls": {"diff":"\/comments\/37156\/get","add":"\/comments\/37156\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/37156"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199116 }

17 комментариев 17 комм.

Популярные

По порядку

Написать комментарий...
4

Где здесь нейросеть, а где результат работы руками тёти-Моти?

Ответить
0

Поясняю! Нейросеть сначала распознает тип (рубашка/джинсы/ сумка/ кеды), потом фасон, затем цвет, материал, рисунок, тип пуговиц и прочие мелочи. Только в самых сложных случаях к работе подключается так называемая Вами "тетя Мотя", но мы предпочитаем использовать определение асессор))

Ответить
0

На скрине выше нет рубашки, но есть брюки, которые не попали в "фасон, цвет, материал, рисунок". Из чего делается вывод, что автоматизация тут не применялась, а подбор сделан вручную ассесором.

Ответить
0

Ну почему же, фасон тот же, материал (деним) тот же, отсутствие рисунка учтено, а по поводу цвета согласна, тут нейросеть в точку не попала. Но это еще одно доказательство того, что работает именно ИИ, а не человек, Вы не находите? Асессор подобрал бы все более точно.
Отсутствие рубашек объясняется, скорее всего, тем, что выбранные нейросетью варианты закончились в ассортименте магазинов-партнеров. Наша система автоматически отсекает ссылки, которые ведут на не функциональные страницы магазинов. Поисковая выдача поэтому очень изменчивая, например, сейчас на виджете уже появились рубашки (прикладываю скрин)

Ответить
3

Интересно, какие инвестиции были в проект и предполагаемый срок окупаемости?

Ответить
3

На ASOS что-то похожее есть по функционалу. Но подбор кажется точнее осуществляется, чем на примерах выше.

Ответить
0

Nasti, у Asos действительно есть похожий функционал, но, насколько я понимаю, работает он на базе мобильного приложения, подборка лука выдается из ассортимента Asos. Наш сервис работает как виджет, ничего загружать не нужно. Товары подбираются сразу из нескольких интернет-магазинов, и пользователю есть из чего выбирать

Ответить
1

Очень круто! А если эту историю перенести на дизайн интерьеров? Может сработать?

Ответить
1

Константин, спасибо! Чтобы повысить качество распознавания, мы решили сосредоточиться на одном типе объектов - fashion-товарах, но в будущем все возможно. Кстати, сервисы для распознавания предметов интерьера уже есть, самый популярный, пожалуй, ViSenze
https://www.visenze.com/

Ответить
1

Была же ещё в 2017 году статья про них https://vc.ru/25001-sarafan

Ответить
0

Андрей, очень здорово, что Вы нас запомнили! Почти за год наш сервис сильно изменился, поэтому мы решили опубликовать обновленную информацию о проекте

Ответить
1

Круто! Пойду поиграюсь

Ответить
1

Не понимаю где нейросеть во всем этом

Ответить
0

Lora, уже отвечала на комментарий выше, но повторюсь на всякий случай: наша нейросеть сначала распознает тип (рубашка/джинсы/ сумка/ кеды), потом фасон, затем цвет, материал, рисунок, тип пуговиц и прочие мелочи

Ответить
–1

Не очень ясна схема монетизации.

Ответить

Комментарий удален

0

Тема интересная, но не новая. Помню были такие Superfish - ещё лет 5 назад развили бурную деятельность в западном сегменте и вроде даже планировали выйти на российский рынок. Но что то пошло не так...

Ответить

Комментарий удален

0

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Команда калифорнийского проекта
оказалась нейронной сетью
Подписаться на push-уведомления