Инженеры из университета в Чикаго создали сервис для защиты фотографий от распознавания лиц — он уже «обманул» Amazon

Они рассчитывают, что пользователи массово начнут менять фотографии перед загрузкой в сеть, чтобы «отравить» базы данных систем распознавания.

Компьютерные инженеры из Чикагского университета разработали инструмент Fawkes, который маскирует фотографии для защиты от систем распознавания лиц, сообщает The New York Times.

Для этого Fawkes меняет — или «маскирует», как говорят создатели инструмента — изображение на уровне пикселей, объясняет издание. За месяц программное обеспечение скачали больше 50 тысяч раз с сайта для разработчиков.

The New York Times
The New York Times

В ходе испытаний исследователи смогли обмануть системы распознавания лиц от Amazon, Microsoft и китайской технологической компании Megvii. Однако изменения видны невооружённым глазом, утверждает The New York Times.

Слева — оригинальная фотография редактора The New York Times, справа — «замаскированная» версия The New York Times
Слева — оригинальная фотография редактора The New York Times, справа — «замаскированная» версия The New York Times

Сейчас исследователи работают над бесплатной версией для пользователей без навыков программирования, пишет издание.

Приложение предназначено для широкого пользования, чтобы «отравить точность» баз данных, собираемых системами распознавания лиц в интернете, говорят создатели.

Исследователи рассчитывают, что в идеале люди начнут маскировать все загружаемые в интернет изображения. Тогда компании вроде Clearview не смогут создавать работоспособную базу данных, потому что реальная фотография человека не будет соответствовать образцу в «отравленной» базе.

«Наша цель — заставить Clearview уйти», — заявил Бен Чжао, профессор информатики в Чикагском университете.

Стартап Clearview AI собирает «миллиарды» фотографий в интернете для создания базы, которую используют частные компании, полиция и другие организации, напоминает издание.

108108
73 комментария

Прекрасно
Новый софт, который маскирует незначительные признаки, но оставляет важные признаки, по которым люди узнают людей.
Он прекрасно пополнит базы для обучения ML моделей, чтобы они стали еще лучше работать.

82
Ответить

Нет. Одна из фич таких вот решений (это, к слову, не первое) в том, что полученные результаты непригодны для обучения моделей. Можно хоть миллион модифицированных вариантов одного человека засунуть и всё равно машина не сможет узнавать этого человека на миллион первом варианте. В этом и прелесть.
То есть изменённые варианты просто непригодны для обучения. Более того, они будут только ухудшать детект! То есть будут _отравлять_ датасет.

ОДНАКО! Нужно понимать, что речь идёт именно о распознавании конкретных людей. Если же просто сравнивать оригинальное изображение и найти его отравленную копию (как тот же VisiPics) — тут проблем никаких не будет. Но такой задачи и не стоит.

24
Ответить

Как раз пришел сюда это написать, если все начнут его использовать, его смысл исчезнет ¯\_(ツ)_/¯

4
Ответить

Комментарий недоступен

2
Ответить

Можешь объяснить, что именно она делает языком математики? Я пойму.

Ответить

Fawkes меняет — или «маскирует», как говорят создатели инструмента — изображение на уровне пикселей

66
Ответить

Даже VC согласен:

7
Ответить