Почему сквозная аналитика не дает желаемого результата: разбираемся в причинах. Часть 1

Согласно исследованию Gartner, более 50% руководителей высшего звена недовольны качеством и ценностью, полученной от аналитики. По мнению участников опроса, ожидания от внедрения и интеграции аналитических систем и инструментов не были оправданы и не принесли планируемого результата.

Почему сквозная аналитика не дает желаемого результата: разбираемся в причинах. Часть 1

В этой статье мы поговорим про:

  • сложности, которые могут повлиять на качество app/web данных;
  • решения, основанные на нашем опыте и реальных кейсах из практики.
Почему сквозная аналитика не дает желаемого результата: разбираемся в причинах. Часть 1

Зачастую, маркетологи и аналитики, руководители направлений отмечают, что сталкиваются с определенным количеством сложностей в работе с данными.

Например:

  • Необходимость выделять дополнительный ресурс для внедрения системы аналитики и интеграции ее внутри команды;
  • Отсутствие точных рекомендаций для определением “слабых зон” и подводных камней, с которыми можно столкнуться при запуске аналитического проекта на любом из его этапов;
  • Сложности с планированием конечного результата, из-за чего ожидание/реальность зачастую не сходятся;
  • Непонимание, действительно ли полученным данным доверять можно? И как их корректно интерпретировать после сбора?

Сегодня мы публикуем первую часть нашего материала про качественные данные.

О чем поговорим?

  • Обсудим, что такое качественные данные;
  • Рассмотрим, с какими этапами сталкивается аналитический проект при запуске;
  • Разберем один из важнейших этапов — подготовительный;
  • Опишем некоторые “подводные камни” и подберем решение для каждого из них.

Что такое качественные данные?

Качественные данные — это определенная характеристика или набор свойств, которые отражают степень пригодности данных к использованию для решения поставленных задач. Среди этих свойств: полнота, согласованность данных, точность, надежность и др.

По мере увеличения объема данных, становится важным согласованность внутренних данных. Когда данные согласованы, они соответствуют заранее определенным правилам и стандартам, гарантируя, что одна и та же информация дает одинаковые результаты независимо от того, где и как к ней осуществляется доступ.

Почему качество данных важно?

Теперь давайте поговорим о важности качества данных. Что делает все это таким важным? Если говорить простыми словами, чем здоровее данные, тем лучше результат.

Состояние ваших данных, уровень их здоровья, напрямую влияет на работу бизнеса и расширяет возможности развития. Постоянно совершенствуя и повышая качество данных, которые вы используете, позволит вам своевременно влиять на эффективность маркетинговых и аналитических инструментов.

Решения, построенные на неточных данных, могут привести вас к некорректным заключениям и стратегическим ошибкам

Согласно опросу Gartner, проведенному среди крупных компаний, низкое качество данных является причиной убытков в среднем в размере 15 миллионов долларов в год. При этом чем позже выявляются плохие данные, тем дороже обходится исправление ошибок.

Работа с данными

Весь процесс работы с данными можно разделить на несколько основных этапов:

  • Определение основных задач и требований к данным.
  • Сбор сырых данных.
  • Подготовка данных к использованию.
  • Использование данных (отчетность, прогнозирование, интерпретация).

Мы считаем 1 и 2 пункты наиболее важными, ведь именно ошибки, совершенные на первых этапах, приведут вас к неверному результату.

Вызовы и решения

  • Определение основных задач и требований к данным

Это подготовительный этап перед запуском нового аналитического проекта. Чем более структурированной и тщательной будет ваша подготовка к работе над этапом подготовки, тем более точно вы сможете запланировать и распределить требуемый ресурс.

На данном этапе советуем проработать, какие задачи бизнеса необходимо будет решать, какие источники данных для этого потребуются, какие требования у компании к этим источникам, какая структура данных необходима и др.

Проработайте список бизнес-вопросов, на которые можно получить ответ на основе сформированной отчетности. Какими могут быть вопросы:

  • Какова динамика эффективности каналов X и Y по сравнению с предыдущим периодом?
  • Как соотносится структура расходов и структура выручки в разрезе каналов?
  • Как инвестиции в маркетинг/рекламные интеграции влияют на выручку компании и в каком %-ом соотношении?
  • Какие источники, каналы и кампании драйвят доход в online, ROPO и ROPO+ online?
  • Как различаются количество и стоимость конверсионных действий пользователей по каналам в зависимости от модели атрибуции?

Список вопросов для каждого проекта будет индивидуален.

Полный список критериев на стадии планирования мы сформировали в нашем гайде, который можно получить по ссылке. Мы проанализировали более 20 критериев, которые могут оказать влияние на качество ваших данных.

В предыдущих материалах мы описывали основные виды отчетности, используемые маркетологами, аналитиками и управленцами для формирования инсайтов:

  • Рассказывали про пользу Performance отчета для бизнеса здесь.
  • Подробно рассказывали в статье про ROPO отчеты и влияние ROPO на Online.
  • Хотите знать больше про мультиканальную атрибуцию?

Составили полноценный гайд по всем моделям атрибуции: от LastClick до funnel Based Attribution. Оставить заявку на получение можно здесь.

  • Делимся опытом, как сохранить Отчет по баннерам, используемый бизнесом, при смене источника сбора данных в кейсе с RS24.

После того, как вы определились с целями и задачами, обратите внимание на требования к структуре данных. Структура данных — это способ организации информации для более эффективного использования. Это данные, связанные между собой определенным образом. Без структурирования данных вы не сможете их упорядочивать, искать нужную информацию, анализировать и использовать данные с применением алгоритмов программирования.

Мы рекомендуем подготовить данные из следующих источников и структурировать их:

  • О поведении пользователей в web/app;
  • О расходах из рекламных площадок;
  • Чат-бот, email и другие платформы;
  • CRM/ERP системы, google sheets и др сервисы.

Продумайте, с помощью какого аналитического стека вы будете собирать необходимые данные. Мы подготовили пример целевой архитектуры проекта, на которую вы можете ориентироваться.

<p>*Аналитические инструменты для каждого проекта подбираются индивидуально, исходя из требований и возможностей бизнеса.</p>

*Аналитические инструменты для каждого проекта подбираются индивидуально, исходя из требований и возможностей бизнеса.

Планирование любого аналитического проекта — один из важнейших этапов. Согласно статистике и нашему опыту, именно из-за ошибок в планировании, формировании целей и задач, дальнейшая работа может быть выполнена впустую или с погрешностями.

Расскажите, как вы проверяете данные на качество? С какими вызовами, связанными с недостаточным качеством данных, вы сталкивались?

Более 70 компаний из ТОП-100 в РФ уже доверяют работу со своими данными команде DataGo! Если у вас остались вопросы по подбору аналитических инструментов и способам объединения данных, свяжитесь с нами.

99
2 комментария

Странно видеть что в erp / crm не передаются данные из аналитики или сайта судя по "схеме", а значит теряется связка "пользователь сайта - покупатель в erp", что снижает ценность аналитики.

Все же в Сквозной аналитике самое важное - это создание Сквозного идентификатора пользователя (client_id) и его бережная передача во все источники, и, там где произошла потеря, аккуратный метчинг, будь то метчинг по номеру телефона или иным признакам...

Но спасибо за статью! Ценно, и приятно что кто-то пишет о проблематике сквозняка

1
Ответить

Яков, спасибо за комментарий и оценку!

1
Ответить