Дайджест новостей машинного обучения и искусственного интеллекта за август

Привет, читатель. Меня зовут Рушан Сюрмаков. Я делаю «Нейрон», проект, где рассказываю о машинном обучении, искусственном интеллекте и Data Science. И делаю так, чтобы всё это стало понятно.

В закладки

Отфильтровав для вас большое количество источников и подписок — собрал все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за август. Для тех, кто не читал, — дайджест за июль.

  • Российский человекоподобный робот пробирается на МКС. Российский космический корабль «Союз» состыковался с МКС. В капитанском кресле капсулы, предназначенной для перевозки пассажиров, сидел Skybot F-850, человекоподобный робот, созданный российским космическим агентством «Роскосмос».
  • ИИ помогает астрономам исследовать космос на объект обитаемых планет. Наблюдать экзопланету трудно, потому что её свет «в миллионы или миллиард раз слабее звезды, вокруг которой она вращается».
  • Математическая модель раскрывает секреты зрения. Математики и нейробиологи создали первую анатомически точную модель, которая объясняет, как возможно зрение.
  • Как ИИ помогает ухаживать за стареющим населением. Стартап TeiaCare представляет первого цифрового помощника, который оказывает поддержку профессиональным попечителям.
  • Раковые опухоли тоже любят сладкое. Одним из факторов развития ожирения может быть излишнее потребление сладостей, но пока непонятно, может ли сладкое напрямую (без развития ожирения) стимулировать рак. Похоже, что может: эксперименты на генетически модифицированных мышах показали, что сладкий сироп, аналоги которого используются в пищевой промышленности в качестве подсластителей, активирует рост раковых опухолей кишечника даже при отсутствии признаков ожирения.
  • Нейросеть распознаёт болезни растений по изображению. Маниок — это второй по популярности источник карбогидратов в Африке. Исследователи провели соревнование, чтобы помочь местным фермерам выращивать и ухаживать за этим растением.
  • Суперкомпьютер Cray за $600 млн, опережая другие суперкомпьютеры, займётся созданием улучшенного ядерного оружия. El Capitan станет третьим «превосходным» компьютером, построенным Cray для правительства США, двумя другими будут Aurora для Аргоннской национальной лаборатории и Frontier для Oak Ridge.
  • Нейронные сети обеспечивают скорость анализа и сканирования мозга. Радиологи всего мира изучают возможность использования инструментов искусственного интеллекта для распределения своих тяжёлых рабочих нагрузок и повышения согласованности, скорости и точности анализа сканирования мозга.
  • Использование ИИ для выявления рака толстой кишки. Чтобы сократить количество пропущенных предраковых поражений, один японский эндоскопист обращается к ИИ.
  • Двусторонняя логистическая потеря для обучения нейронных сетей с шумными данными. Качество моделей, созданных с помощью алгоритмов машинного обучения, напрямую зависит от качества обучающих данных, но наборы данных реального мира обычно содержат некоторое количество шума, который создаёт проблемы для моделей ML.
  • Нейросеть заполняет отсутствующие фрагменты в видеозаписи. Исследователи использовали предсказание оптического потока для заполнения отсутствующих фрагментов в видеозаписи. Метод был протестирован на задачах DAVIS и YouTubeVOS. Модель получила state-of-the-art результаты по скорости обучения и качеству предсказаний.
  • Национальная служба здравоохранения Великобритании запускает лабораторию искусственного интеллекта.
  • Как ИИ помогает защитить исчезающих тайваньских леопардовых кошек. Менее 500 леопардовых кошек живут в естественной среде обитания, которая пересекается со многими проектами развития в центральных районах острова. В сельской местности кошки часто становятся жертвами дорожного убийства из-за увеличения трафика. Чтобы сохранить популяции леопардовых кошек, правительство Тайваня, организации по защите животных, исследователи и эксперты по искусственному труду совместно работали над сохранением вида.
  • Совместное распознавание речи и диаризация динамика с помощью последовательной передачи. Способность распознавать слова «кто сказал, что» или диаризация динамика является критически важным шагом для понимания звука диалога между людьми с помощью автоматизированных средств.
  • Moviescope: масштабный анализ. Фильмы с использованием нескольких модальностей. Команда исследователей из Университета Вирджинии недавно провела крупномасштабный анализ, направленный на выявление особенностей в рекламных роликах, которые лучше всего предсказывают жанр фильма и предполагаемый бюджет. В своём исследовании, изложенном в статье, ранее опубликованной на arXiv, исследователи специально сравнили эффективность визуальных, аудио, текстовых и метаданных функций.
  • Мозг вдохновляет новый тип искусственного интеллекта. Машинное обучение, введённое 70 лет назад, основано на доказательствах динамики обучения в мозге. Используя скорость современных компьютеров и больших наборов данных, алгоритмы глубокого обучения в последнее время дали результаты, сопоставимые с результатами человеческих экспертов в различных применимых областях, но с различными характеристиками, которые далеки от современных знаний в области нейробиологии.
  • Отслеживание рук в режиме реального времени с помощью MediaPipe. Способность воспринимать форму и движение рук может быть жизненно важным компонентом для улучшения взаимодействия с пользователем в различных технологических областях и платформах.
  • Персонализированное распознавание речи Project Euphonia для нестандартной речи. Полезность технологии зависит от её доступности. Один из ключевых компонентов доступности — автоматическое распознавание речи (ASR), которое может значительно улучшить способность людей с нарушениями речи взаимодействовать с повседневными интеллектуальными устройствами.
  • Глубокое обучение позволяет учёным идентифицировать раковые клетки в крови за миллисекунды. Исследователи из UCLA и NantWorks разработали устройство на основе искусственного интеллекта, которое обнаруживает раковые клетки за несколько миллисекунд — в сотни раз быстрее, чем предыдущие методы.
  • Понимание видео с помощью обучения по временной согласованности циклов. За последние несколько лет достигнут значительный прогресс в области «понимания» видео. Тем не менее существует много сценариев, где нам нужно более одного ярлыка для всего клипа.
  • Google показывает многолетний «беспорядочный» взлом iPhone. Эксперты по безопасности Google обнаружили «беспорядочную» операцию взлома, которая была нацелена на «айфоны» в течение как минимум двух лет и использовала веб-сайты для внедрения вредоносного программного обеспечения для доступа к фотографиям, местоположениям пользователей и другим данным.
  • Исследователи из Университета Ватерлоо разрабатывают лучший способ использовать мощность солнечных батарей.
  • Интерактивная, автоматизированная трёхмерная реконструкция мозга мухи. Цель исследования коннектомики — составить карту «электрической схемы» мозга, чтобы понять, как работает нервная система.

Бонус

  • Ископаемая ДНК открывает новые повороты в современном человеческом происхождении. Современные люди и более древние гоминины многократно скрещивались по всей Евразии и Африке, и генетический поток шёл обоими путями.

На этом наш короткий дайджест подошёл к концу. Делайте выводы и работайте продуктивно. Не забудьте поделиться статьёй с коллегами.

Не пропускать статьи и новостные дайджесты вам поможет Telegram-канал.

Всем знаний!

Материал опубликован пользователем.
Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Рушан Сюрмаков", "author_type": "self", "tags": ["\u043c\u0430\u0448\u0438\u043d\u043d\u043e\u0435\u043e\u0431\u0443\u0447\u0435\u043d\u0438\u0435","\u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0439\u0438\u043d\u0442\u0435\u043b\u043b\u0435\u043a\u0442"], "comments": 7, "likes": 21, "favorites": 16, "is_advertisement": false, "subsite_label": "ml", "id": 82141, "is_wide": true, "is_ugc": true, "date": "Mon, 09 Sep 2019 13:26:36 +0300", "is_special": false }
0
{ "id": 82141, "author_id": 217512, "diff_limit": 1000, "urls": {"diff":"\/comments\/82141\/get","add":"\/comments\/82141\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/82141"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 332941, "last_count_and_date": null }
7 комментариев
Популярные
По порядку
Написать комментарий...
1

Очень информативно, спасибо!

Ответить
1

Классная подборка! Спасибо автору!

Ответить
0

Подборка классная, как и канал, но

Российский человекоподобный робот пробирается на МКС. Российский космический корабль «Союз» состыковался с МКС. В капитанском кресле капсулы, предназначенной для перевозки пассажиров, сидел Skybot F-850, человекоподобный робот, созданный российским космическим агентством «Роскосмос».

Серьезно?
При чем тут ИИ и машинное обучение?
Он же дистанционно управляемый.

Ответить
0

Будьте пожалуйста повнимательнее:

"In addition to sensing conditions during launch, Skybot has some functions similar to your average Alexa speaker — it can answer questions, have short conversations and tell a few jokes."

Ответить
0

Может про промоботов ещё писать?

Ответить
0

Просто даже цель не связана с ии
Цель космического эксперимента — исследование возможностей использования дистанционно-управляемого антропоморфного робота в перспективных пилотируемых транспортных кораблях нового поколения.

Реф. https://www.roscosmos.ru/26739/

Ответить
1

Спасибо за ссылку и комментарий.

Ответить
{ "page_type": "article" }

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "Article Branding", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "cfovx", "p2": "glug" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Баннер в ленте на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "disable": true, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ] { "page_type": "default" }