МТС

Кто решает за нас, что мы будем смотреть?

Команда онлайн-кинотеатра KION рассказывает, как работает система рекомендаций на платформе и управляет процессами, о которых многие не задумывались.

Искусственный интеллект управляет нашим выбором на многих сервисах, потому что именно с помощью этой технологии построены системы рекомендаций. Все давно привыкли к умным колонкам, проложенным маршрутам без пробок в навигаторе и даже к рекламе, которая попадает точно в потребность: вчера загуглил - сегодня получил рекламное предложение. Искусственный интеллект даже помогает повышать показатели сервисов: по данным Центра Big Data МТС, в 2021 пользователи в 1,5 раза чаще кликали на предлагаемый контент, что позволило на 30% увеличить продолжительность просмотра.

При чем тут искусственный интеллект?

Современные OTT-сервисы (OTT - технология Over the Top, метод доставки контента по сети Интернет) используют ИИ буквально во всех частях работы. Технология применяется при подготовке контента, публикации, вещании, в работе с изображениями и звуком, и даже умеет генерировать постеры к фильмам и сериалам. Но главное — искусственный интеллект лежит в основе системы рекомендаций, и это один из ключевых инструментов привлечения, удержания и побуждения зрителя. Основной принцип искусственного интеллекта в системе рекомендаций — это правильный подбор контента для конкретного пользователя.

KION персонализирует контент для каждого зрителя сразу после регистрации. Данные, которые указал пользователь при входе, анализируются, на их основе система подбирает релевантный контент — например, исходя из возраста или города. Дальше система обучается и подстраивается под человека. Чем чаще он пользуется приложением или сайтом, тем более подходящий контент получает в рекомендациях и на основной странице.

«Релевантность» в нашем случае — не только «схожесть» с тем, что пользователь смотрел раньше. Кинотеатр в разных пропорциях предлагает как похожие на просмотренный контент фильмы и сериалы, так и популярные хиты, новинки нетипичных жанров, событийный контент — всё, что может привлечь зрителя.

Кто формирует нашу ленту рекомендаций?

Главная задача искусственного интеллекта в системе рекомендаций онлайн-кинотеатра — правильно подобрать фильмы и сериалы для каждого конкретного пользователя. Её выполняют алгоритмы, которые анализируют зрителя и его поведение, а также весь контент на сайте.

Мы используем несколько алгоритмов: и простые эвристики, то есть практические методы решения поставленных задач, (например, вычисление популярности внутри сегмента пользователей), и сложные нейросетевые подходы, которые используются в распознавании образов, построении прогнозов и многом другом. Все эти алгоритмы анализируют колоссальный объем самой разнообразной информации, например, продолжительность просмотра контента, наиболее популярные жанры, возраст, пол и другие обезличенные данные пользователей.

В основе алгоритмов рекомендаций используется прогнозная модель, которая позволяет заранее предсказывать, как будет себя вести зритель и как отреагирует на определенные параметры. Это помогает выбирать и рекомендовать тот контент, который ему точно «зайдет». При этом чем большее количество пользователей уже по разным параметрам проанализировано, чем больше данных о них собрано, тем качественнее и точнее рекомендации.

Почему данные важнее алгоритмов?

Самая важная задача в построении системы рекомендаций — это не алгоритмы и написание кодов для них, а сбор «правильных данных» о пользователях, которые помогут точно обучить модель. Имея самый лучший алгоритм, но мало правильных данных для тренировки и обучения, система заведомо покажет результат хуже, чем при наличии плохого низкокачественного алгоритма, но большого количества стратегических данных, доступных для обучения.

Что мы понимаем под «правильными» данными? В мире больших данных любой шаг пользователя в секунду времени становится «биг датой», которая формируется в каждый момент нашей жизни. Эти данные собирают множество систем, но с точки зрения построения систем рекомендаций важны определенные данные. Это просмотры, история навигации, а также обезличенные данные пользователей — та информация, которую можно «добыть» из дополнительных источников. На базе этих факторов строятся модели, которые позволяют делать хорошее прогнозирование.

90% всего рабочего времени технологии тратится именно на тренировку и обучение моделей. Условно, написание кода в ИИ занимает всего 10% времени, все остальное — это работа с данными и формирование на их базе хороших моделей.

С этой точки зрения у телекомов есть большой плюс: в отличие от других игроков, они обладают уже накопленными обезличенными данными о пользователях. Это позволяет сервисам решить проблему «холодного старта», то есть сформировать первую витрину рекомендаций под человека при первом запуске, когда пользователь еще ничего не посмотрел на данной платформе, но ему уже подобран контент, который скорее всего его привлечет и удержит.

Как анализируют контент?

Подборка данных Big Data для рекомендаций — это первая часть работы технологии искусственного интеллекта. Затем ИИ ранжирует контент исходя из проанализированных данных и выгружает наиболее подходящих кандидатов в верхнюю часть выдачи рекомендаций. После этого в дело вступают модели, связанные с коллаборативной фильтрацией, то есть поиском людей максимально похожих на пользователя, и моделей, которые анализируют свойства контента и подбирают подходящие варианты.

Схематично работу системы рекомендаций можно описать так. Сначала каждая единица контента типизируется по нескольким группам признаков: во-первых, это мета-информация контента — жанры, режиссер, год, страна, теги; во-вторых, коллаборативные признаки взаимодействия пользователей и контента — клики, просмотры и т.д.; и наконец, признаки видеоряда с использованием computer vision (например, когда технология находит и определяет предметы по тегам). Дальше эти признаки складываются в вектора и хранятся в предрассчитанном виде для дальнейшего расчета, как определенные шаблоны.

Каждого пользователя также можно представить в векторном пространстве: через взаимодействия с контентом, например, что смотрел, куда кликал, что досматривал до конца, а также в рамках вероятностной модели, определяющей пол, возраст, регион.

И в тот момент, когда пользователь приходит к нам за рекомендациями, например, открывает витрину кинотеатра, мы сопоставляем вектора этого пользователя и контента. Контент, вектор которого «ближе» к нашему пользователю, считается наиболее вероятным для пользователя, и мы его ранжируем выше.

Сочетание технологий и креативности

Технологии ИИ не всемогущи и заменить креативность людей пока не научились — у искусственного интеллекта, все же, нет интеллекта эмоционального. Он способен эффективно решать задачи, но не может их ставить. И с точки зрения рекомендаций контента нужно понимать, что это всегда битва искусственного интеллекта с человеческой креативностью. Редакторские подборки в онлайн-кинотеатрах не менее важны, чем автоматизированные системы рекомендаций.

Редакторы по сути используют тот же «механизм» — анализируют накопленные данные, свой опыт и прочее. Но в этом выборе больше эмоций и знания о человеке и его природе. В таких случаях выверенная искусственным интеллектом модель подсказок в сочетании творческой интуицией редактора дает наилучшие результаты.

0
40 комментариев
Написать комментарий...
Влад

Раньше помню МТС решал за меня какие услуги мне подключить)))))

Ответить
Развернуть ветку
Влад

Аналогично, как я рад, что от МТС ушел.

Ответить
Развернуть ветку
Степан Фадеев

И где лучше? (Вопрос без сарказма)

Ответить
Развернуть ветку
Влад

Меня yota устраивает пока что. Старый тариф кншн, с безлимитом

Ответить
Развернуть ветку
Den Kasyanov

Это может прозвучать странно, но внезапно Ростелеком. В частности в составе пакета мобильный + домашний интернет. Возможно не везде доступен, но в мск есть. Подписки не подключает, спам не шлёт. Звонит пару раз в год с каким-то говном, конечно, жду когда спам-калл-центры внедрят у себя заметки и запишут, что телевизора нет и антивирус устанавливать некуда. После недоступности домашнего интернета в течение нескольких часов искал, куда перейти, но понял, что с моего пакета более выгодных предложений нет.

Ответить
Развернуть ветку
Mitchell

Отличненький у вас сервис 💩Ради интереса попробовал найти рандомные фильмы. Сталкер - нет, Часы - нет, Сладкая жизнь - нет, Ночной дозор, прости господи - нет, 8 женщин - нет, Герой - нет. Смысл вообще вашего существования? Ёлки 3 и Ла-ла ленд пересматривать по сто раз?

Ответить
Развернуть ветку
S.Z

Это к любому подобному сервису в рф можно предъявлять

Ответить
Развернуть ветку
Den Kasyanov

Только в РФ?)

Ответить
Развернуть ветку
S.Z

Не в РФ хоть новинки прилетают

Ответить
Развернуть ветку
Знатный Тролль

"Тариф Новогодний".

Ответить
Развернуть ветку
Металлический Слава

Комментарий недоступен

Ответить
Развернуть ветку
Кирилл Ермаков

А вами кто-то пользуется что ли?

Ответить
Развернуть ветку
Даниил

Я пользуюсь KION. Нормальный сервис и неплохие эксклюзивные сериалы

Ответить
Развернуть ветку
Кирилл Ермаков

«Полицейский с Рублёвки 3» или ещё какой-нибудь «шедевр»?

Ответить
Развернуть ветку
arifulina alina

эмм при чем тут этот смрад?
На кионе я почку смотрела и хрустальный - они вроде даже признаны лучшими сериалами прошлого года....

Ответить
Развернуть ветку
Кирилл Ермаков

Зачем поглощать эту рыготу? Те же яйца, только в профиль.

Ответить
Развернуть ветку
Влад

Ну так и смотри умные сериалы от нетфликс, хз. Доебался до чужих вкусов.

Ответить
Развернуть ветку
Кирилл Ермаков

Какие умные сериалы от нетфликс?

Kion даже в Сафари не открывается, как мне прикоснуться к прекрасному? Каловому сервису, каловый контент.

Ответить
Развернуть ветку
Den Kasyanov

КиноПоиск тоже в сафари показывал черный экран.

Ответить
Развернуть ветку
Кирилл Ермаков

Пользуюсь КиноПоиском уже достаточно долгое время и всё отлично работает в Сафари. Фильмов и сериалов в десятки раз больше.

Пробовал и Кион, но там практически НИЧЕГО нет. Что смотреть-то?

Ответить
Развернуть ветку
Den Kasyanov

Я тоже пользуюсь кинопоиском из-за контента. Подтверждение своим словам про неработоспособность в сафари (насколько получилось) прикрепил ниже.

Ответить
Развернуть ветку
Фиксатор Дверной

Да ладно?

Ответить
Развернуть ветку
Den Kasyanov

Хотел вам пруф скинуть, но смог получить только такое. Рядом в хроме все работает.

Ответить
Развернуть ветку
Den Kasyanov

В режиме инкогнито все-таки получилось:

Возможно это прикол, связанный со 2+ мониторами, но опять же хром нормально с этим работает.

Ответить
Развернуть ветку
Алексей Девятов

Я, например

Ответить
Развернуть ветку
Кирилл Ермаков

Соболезную

Ответить
Развернуть ветку
Яков Сомов

Хотел вам данных отсыпать, а вы меня дискредитируете по браузеру.

Ответить
Развернуть ветку
Фиксатор Дверной

Попрошу не нагонять панику! Вам надо просто сменить свой старый девайс и все будет показывать.. Вот сделал скрин. Но из за защиты не дает делать картинку поэтому и получается черный экран )) а если по другому , то все видно что работает прекрасно.

Ответить
Развернуть ветку
Яков Сомов

спасибо за совет, прямо вот сейчас выкину свой айпад, как я раньше не додумался

Ответить
Развернуть ветку
Кирилл Ермаков

Зачем скидывать скрин с Кинопоиска, если говорят про Kion? Это метаирония или шизофрения?

Ответить
Развернуть ветку
Праздничный щит

Ты не понимаешл насколько технически отстает сафари от гугла и мозиллы

Ответить
Развернуть ветку
Не придумала
Искусственный интеллект управляет нашим выбором на многих сервисах, потому что именно с помощью этой технологии построены системы рекомендаций.

нет, не управляет, если я не пользуюсь рекомендациями, а решаю, что посмотреть, через каталог или поиск по названию/фамилии

Ответить
Развернуть ветку
LNdex

Лучшая технология не ИИ, а торрент

Ответить
Развернуть ветку
Nikita Izmaylov

Спасибо интересно почитать про ML and Deep Learning

Ответить
Развернуть ветку
Aley

У киона отвратительный ui на webos. Ещё с какими то раздражающими задержками. Столько денег у компании и такой отстойный продукт.

Ответить
Развернуть ветку
Гуд Дэй ту Йа

Пользуюсь тремя похожими сервисами. Смотрю только новинки и эксклюзивы. Иногда рою, чо там сервис еще предлагает, но не смотрю.

Ответить
Развернуть ветку
Лясникова Наталья

Ради справедливости, на Яндекс модуле Кион работает стабильнее чем само Яндекс тв, заиканий, лагов, ошибок в разы меньше

Ответить
Развернуть ветку
Максим Степанов

Есть у вас Игра Престолов?

Ответить
Развернуть ветку
Николай Кузнецов

Лютый 314издёж, на всех наших видеосервисах система рекомендаций отстойная.
Всё больше убеждаюсь, что самый относительно честный алгоритм это рэндом фильмов с рейтингом больше 7.

Ответить
Развернуть ветку
Николай Кузнецов
Ответить
Развернуть ветку
Читать все 40 комментариев
null