{"id":13755,"url":"\/distributions\/13755\/click?bit=1&hash=4a49bc9ad259aa8d20fdf5f5cb6cf844e7de4bb2ba8ca3a458efcedefcf5ada8","title":"\u041d\u043e\u0432\u044b\u0435 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0441\u0442\u0438 \u0434\u043b\u044f \u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439, \u0441\u043e\u0437\u0434\u0430\u044e\u0449\u0438\u0445 \u043a\u043e\u043d\u0442\u0435\u043d\u0442 \u043d\u0430 vc.ru","buttonText":"","imageUuid":"","isPaidAndBannersEnabled":false}

Математика в HR

Хороший HR обладает эмпатией, умеет управлять конфликтами, находить баланс интересов бизнеса и сотрудников и многое другое, — ответили бы вы на вопрос о 3 характеристиках классного HR. Но вряд ли упомянули бы математику. Математику как стиль мышления и умение работать с данными: как делать выводы на основе цифр и фиксировать выводы в цифрах.

Итак, зачем математика в HR? Будем давать реальные кейсы, показывать логику подсчетов и результаты, в которые поверить порой сложно.

Стояла задача:
1. провести опрос вовлеченности, узнать фидбек по следующим направлениям: понимание продукта, оценка коллег, профессиональное развитие, оценка руководителя, оценка HR-процессов, оценка компании. 2. Интерпретировать цифры в проблемы и сформулировать задачи для улучшения оценок.

С какими сложностями столкнулись:

  • Данные отличались от того, что мы слышали на exit-интервью, 1to1 и ревью. То есть количественные методы показывали одно, качественные — другое.
  • В компании 90 человек, опрос прошли 40 человек из 6 отделов, причем разделение сотрудников по отделам было неравномерным: от 3 до 17 человек. Встал вопрос: можно ли экстраполировать данные (выводы, сделанные на основе ответов 40 человек, перенести на всю компанию)? Если да, то как считать?

Как работали с данными:

  • Медиана (число, находящееся в середине набора) — эффективная метрика для расчета, но плохо работает с маленьким набором. Соответственно, будет неприменима в командах с численностью 2-5 человек.
  • При таком количестве людей лучше использовать среднее значение. Если везде считать среднее, при разбросах баллов итоговое значение не будет отражать реальную ситуацию.
  • Для того, чтобы сравнивать отделы надо объединять медиану и среднее — среднее медиан. Минус такого подхода: непонятно, как разбросаны баллы.
  • Среднеквадратическое отклонение, Sd показывает насколько разбросана величина относительного среднего ответа.

Итого:

Каждый вопрос был измерен в двух метриках.

  • Медиана. Если оценка одного направления состоит из нескольких вопросов, считаем среднее медиан.
  • Среднеквадратическое отклонение, Sd. Если оценка одного направления состоит из нескольких вопросов, считаем среднее Sd.

Если Sd больше 2.5, стоит особенно обратить внимание на разброс чисел.

На выходе мы получили 2 оценки по каждому направлению, первую как основную, которую можно считать общим фидбеком, вторую - показывающую, насколько эта оценка покрывает мнение большинства, то есть надо ли проходиться точечно по ответам или можно с уверенностью сказать, что она отражается ситуацию по больнице.

0
Комментарии
Читать все 0 комментариев
null