Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

Вы подготовили данные для расчётов, «очистили» их от дефицита, акций, сезонности и прочих факторов. Как теперь спрогнозировать спрос, чтобы понять, какое количество товаров нужно заказать на будущее? Далее разберёмся, какие существуют подходы и методы прогнозирования потребительского спроса и как с ними работать.

Методы прогнозирования спроса: их эволюция

Итак, какие методы прогнозирования спроса существуют? На графике ниже видно, как они развивались.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

Мы видим, когда и какие методы прогнозирования спроса считались рабочими. Так «расцвет» классических методов пришёлся приблизительно на 2008-2009 гг., затем активнее стали использовать квантильное прогнозирование и постепенно перешли к методам вероятного прогнозирования. Конечно, временные рамки здесь условные, ведь несмотря на то, что уже появились более современные методы, классическое прогнозирование до сих пор используется.

Экспертные модели прогнозирования спроса

Прежде чем перейти к разбору каждого метода в отдельности, поговорим о так называемых экспертных способах прогнозирования спроса. Они до сих пор часто используются на практике. В чём их суть: некий эксперт, который хорошо знает ассортимент, выставляет пороговые значения спроса по отдельным позициям.

Классический экспертный метод – способ минимакса, где для каждой позиции устанавливается максимальное и минимальное значение запаса. Если он опускается до какого-то минимума, формируется точка запаса, и мы заказываем товара столько, чтобы хватало до максимума.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

Недостаток этого метода в том, что мы не можем корректно выставлять и пересчитывать минимаксы по десяткам тысяч товарных позиций. Кроме того, спрос по товарам постоянно меняется. Возможно, такие методы прогнозирования потребительского спроса могут подойти для каких-то небольших объёмов. При широком ассортименте, множестве торговых точек и динамично меняющемся спросе применять такой метод прогнозирования нецелесообразно. Это может привести как к сверхзапасам, так и к дефицитам.

Общий принцип методов классического прогнозирования

На основании какого-то спроса в прошлом периоде мы можем спрогнозировать, какой спрос или какие продажи у нас будут в будущем. Общая особенность методов классического пронозирования в том, что прогноз спроса на день, на неделю, на месяц (исходя из нашего периода расчёта) будет равен какому-то одному числу.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

Внутри классического прогнозирования могут использоваться разные модели прогнозирования спроса от простых до сложных. Например:

  • по средним продажам (SMA и т.д.)
  • экспоненциальное сглаживание (простое и двойное) - ES
  • авторегрессия (1 и 2 порядка) – AR
  • Arima (AR+MA)
  • Метод Хольт-Винтерса
  • Нейронные сети и генетические алгоритмы (NN+GA)

Набор методов разный, но главная их особенность в том, что на выходе получается одно число.

Рассмотрим основные методы.

Расчёт по среднему (SMA), или простая скользящая средняя

Это один из самых простых и распространённых методов прогнозирования спроса, которым до сих пор пользуются многие компании. Формула простого скользящего среднего(SMA) выглядит так:

Прогноз(t+1) = (1/(T+1)) *[Продажи(t)+ Продажи(t-1)+...+ Продажи(t-T)]

Для того чтобы просчитать спрос по этому методу, необходимо:

  • Выбрать ширину окна Т, где Т указывает, за какой период мы будем усреднять продажи. Если мы управляем дневным спросом, то за 2-3 последних дня, 7 последних дней и т.д. Если считаем спрос по месяцам, то за последние 2,3, 4, 5 месяцев.
  • Для прогноза на следующий период будем брать среднее за выбранную ширину. Допустим, мы строим прогноз на 10-й день. Ширина окна 5 штук и значит мы берём среднее за последние 5 дней. Получили продажи за новый день и опять берём среднее за последние 5 дней. Таким образом мы прогнозируем данные и наш спрос на будущий период.
  • Продажи мы можем брать как подряд, которые шли в предыдущем периоде, так продажи за тот же период в этом же месяцев в этом же году и т.д. Здесь можно гибко подходить к периоду расчёта данных, который мы берём для получения среднего.

Посмотрим, как работает такое прогнозирование на примере в Excel.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1
Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

У нас есть ряд продаж и дальше мы хотим построить прогноз. Продажи агрегированы по месяцам, и, допустим, мы хотим сделать прогнозы на помесячные периоды. Для этого выбираем ширину окна – считаем среднее за последние 2,3, 4, 10 месяцев. Если выбираем ширину окна 2, а продажи в ноябре и декабре были 15 и 40 соответственно, то в январе в среднем прогнозируем 27,5, в феврале – 40.

Чем шире окно, тем ближе будут показатели к расчёту по средним за весь период. На графике это видно: синим цветом обозначены реальные продажи, остальные графики – это продажи с разной шириной окна.

Такой метод может подходить для хорошо продающихся товаров, которые гладко стабильно продаются с небольшими колебаниями. За всю нашу практику он подошёл только одной компании. В остальных наших кейсах методы расчёта продаж по среднему даёт достаточно большие погрешности и неэффективны с точки зрения управления товарными запасами. Они приводят к дефициту или излишним запасам.

На смену этому методу пришли различные расчёты по средневзвешенному среднему. Рассмотрим их особенности.

Метод по Шрайбфедеру, или метод средней взвешенной

Если в прошлом методе мы считали спрос по средним продажам, то в этом появляются различные веса разных месяцев. Что мы делаем?

  • Рассчитываем продажи на один рабочий день прошедших месяцев. Если были какие-то выходные, важно знать количество рабочих дней, чтобы посчитать средние продажи за эти дни. Например, в феврале 28 дней, а в январе из 30 вы работали 25.
  • Выбираем систему весов для прошедших месяцев. Какие-то данные будут более важными для построения расчётов, какие-то наоборот.
  • Рассчитываем прогнозное потребление за 1 рабочий день будущего месяца исходя из прошлых продаж и весов.
  • Рассчитываем прогнозное потребление за месяц исходя из числа рабочих дней.

Разберём на примере:

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

В первом столбце исходные данные по месяцам, и мы хотим построить на их основе прогноз на декабрь. Продажи в ноябре – 560 штук. Рабочих дней 28. Считаем потребление за один рабочий день – 20 штук.

После того как мы получили месячное потребление для каждого месяца, используем систему весов. Шрайбфедер предлагает разные варианты системы весов. В данном случае мы взяли модель, в которой говорится, что недавние продажи более сильно влияют на наше построение прогноза.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

Вес для ноября – 3, для октября – 2,5 и т.д. Самый большой вес у прошлого периода, наиболее ближнему к тому, к которому мы проводим расчёт. В данном случае это ноябрь. Дальше каждый месяц умножаем на его вес. 20х3 = 60. После считаем сумму всех месячных потреблений, умноженных на вес – 143. Общая сумма весов – 10.

Прогноз на декабрь = 143/10* 28(число рабочих дней) = 400 штук

В книге «Эффективное управление запасами» Шрайбфедер предлагает множество схем весов, которые могут подходить для разных товаров. Например:

  • Простая шестимесячная (или трёхмесячная) средняя. Это расчёт среднего с окном 6. То есть необходимо взять 6 месяцев и посчитать среднее за этот период.
  • Для сезонных товаров он выделял либо простую сезонную среднюю, либо сезонную взвешенную среднюю. Если мы строим прогноз на декабрь, то берём данные за последнюю зиму, либо сезонную взвешенную среднюю. В данном случае декабрь значит для нас больше, т.к. мы делаем прогноз на месяц.
  • Коэффициенты взвешенной средней. Это то, что было в нашем примере – 3, 2,5 и на убыль.

То есть здесь есть какой-то предполагаемый набор весов. На нашей практике встречалось, что компания разрабатывает собственный набор весов. Работать так можно, но независимо от того, как ответственно мы походим к расчётам этих весов, данный метод построения прогнозов имеют довольно большие ограничения.

Посмотрим пример расчёта по средневзвешенным продажам в Excel.

Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1
Обзор классических методов прогнозирования спроса. Их достоинства и недостатки. Часть 1

У нас есть ряд продаж, известно число рабочих дней в каждом периоде, и мы хотим построить прогнозы. Имеются прогнозы на 5 месяцев с весами от 3 до 1. И на три месяца с весами от 5 до 1. Продажи делятся на число рабочих дней, умножаются на вес этого месяца. Получившийся показатель делим на сумму весов и умножаем на число рабочих дней. Реализовать всё это в Excel достаточно просто. Логика такая: мы выбираем какую-то формулу весов, либо разработанную нами, либо предложенную в теории. И исходя из этой системы весов строим прогнозы.

- Метод экспоненциального сглаживания (ES)

- Метод Хольта-Винтерса

- Авторегрессия, Arima и другие методы

- Как подобрать коэффициенты?

- Общие проблемы методов классического прогнозирования

4
Начать дискуссию