Ещё в 2019 году в службе управления запасами компании появилась команда из аналитиков и инженеров больших данных, которая начала заниматься проектом по прогнозированию спроса с помощью искусственного интеллекта (Machine learning forecast). Идея заключается в том, что алгоритм должен учитывать для магазинов всех форматов сотни признаков. Это атрибуты товаров, специфика торговых точек, особенности и пересечения промо-акций, ценовые, товарные характеристики, запасы, спрос в зависимости от сезона, праздников и даже от того, сколько магазинов конкурентов находится рядом. Команда собрала модель больших данных из разных информационных систем компании и внешних источников. Это данные геолокации, погодные условия и так далее.
В целом интересно, но формулировка по типу "мы лучшие", потому что "нам не известны случаи", что кто-то смог добиться такого же результата - я бы сказал, забавная что ли)))
Лет 15 назад подобное делал в Топ-Книге. Группа признаков с весами и допущениями. Тут важно грамотно описать товар. Работало без нейронок/ML.
Ну это задача, это 1/3 от нужного.
Комментарий недоступен
Для этого, лет как 10+-, есть электронные ценники... правда не в рф
Комментарий недоступен
Гастроном в товарообороте крупных сетей - около 1/3 от всего оборота. Поэтому 5% - это существенный показатель. Плюс мы сэкономили время работников магазинов.
Я б добавил, на какой % выросла выручка, т.к. снизить списание можно и до 100% не закупая товар вообще