Вы, наверное, уже не раз слышали о тонкой настройке (fine-tuning) моделей. На самом деле, в нашей компании мы настраиваем модель каждые 10 секунд. До написания этой статьи я даже настроил свой завтрак, на всякий случай, потому что как мы все знаем, все становится лучше, когда оно тонко настроено 🧐.
• Тонкая настройка моделей в машинном обучении является модным термином.
• Модель в машинном обучении представляет собой математическое уравнение с большим количеством параметров.
• Тренировка модели заключается в поиске правильных параметров a и b для предсказания на основе входных переменных.
• Современные LLM имеют миллиарды параметров, но основная идея остается такой же.
• Тонкая настройка заключается в использовании существующей модели, обученной для другой задачи или на другом наборе данных.
• Ключевой момент - использовать модель, которая уже хорошо справляется с определенными базовыми аспектами задачи.
• Тонкая настройка полезна для адаптации универсальной модели для выполнения конкретных требований или проблем.
• Метод генерации с дополнением запросами (RAG) используется в языковых моделях ИИ и похож на сочетание суперумного библиотекаря с искусным писателем.
все верно