5. Вы должны хорошо понимать проблему которую юзер решает, и быть способным описать идеальное решение из первых принципов. Жирным, потому что самое важное. Вы не должны оперировать “какими-то” коэффициентами. Вы упростите себе жизнь когда станете понимать, что каждый коэффициент значит, и выбросите все то, что не понимаете. Меньше иногда больше. Таким образом вы сами сможете приходить к известным решениям, но уже с пониманием как они работают, и как они относятся к другим вариантам решения. И я не говорю знать все формулы или доказывать теоремы, я говорю понимать, что вы делаете, и главное почему так, а не иначе. Мы так сами вывели много формул, без сложной теории, а чисто из логики и базовой статистики, и смогли улучшить для нашего конкретного случая то, что другие берут не думая. Например, мы понимаем общий принцип для которого коллаборативная фильтрация является частным случаем, знаем как там информация движется, и можем ее улучшить. Из знания матричной факторизации, что является просто имплементацией, к этому не прийти, вы сможете улучшить только имплементацию. Это как понимать реализацию формулы в коде против понимания того как формула работает. Проверки понимания – вы должны мочь объяснить принцип работы пошагово на пальцах, можно с абстракциями, но без формул.
Все так, даже в компаниях по-крупнее 👍