Маленький шаг искусственного интеллекта — большой для аналитики

Как увеличить конверсию, эффективность менеджеров и грамотно оптимизировать рекламу — три вечных вопроса в digital-маркетинге. Однако у искусственного интеллекта есть ответы на них в этой статье.

Маленький шаг искусственного интеллекта — большой для аналитики

Всем привет! Меня по-прежнему зовут Павел Мрыкин, я являюсь экспертом по сквозной аналитике в Calltouch. Сегодня я хотел бы поговорить с вами о возможностях, которые получает бизнес при объединении двух технологий, а именно — сквозной аналитики и искусственного интеллекта.

Зачем она вообще нужна бизнесу? Чтобы управлять процессами на основе данных, а не магической «чуйки». Сквозная аналитика позволяет в одном окне объединить все данные, которые важны для принятия управленческих решений.

Однако что делать, если потребовались данные, которые не передаются из CRM, или нужно срочно оценить качество и характер входящих звонков, но чтобы сделать это, нужно сначала прослушать каждый звонок?

Есть три варианта исхода событий:

1. «Забить». Ну нет данных и нет, как-то до этого же без них работали, давайте посмотрим, что можно сделать без них. Мы, конечно, так делать не будем, и поэтому идём дальше.

2. Настроить CRM на передачу необходимых данных, нанять сотрудника, который будет прослушивать и тегировать дальше звонки. Идея с CRM правильная, но в реальности мы часто встречаемся с тем, что разработчик занят и у него сейчас другие приоритетные задачи.

Что же касается людей, то они могут заболеть, устать, ошибиться при выборе тега, не сохранить работу и так далее. Таким образом влияние человеческого фактора слишком велико. Если же вы уверены, что за сотрудником не нужно будет проверять его работу и она будет на 90% сходиться с реальностью — или вам очень повезло с сотрудником или пора проснуться.

3. Если же задачу нужно решать, а предыдущий вариант сам себя дискредитирует, то предлагаю переложить обработку всех данных на бездушные машины. Работают они 24/7, не устают, качество работы зачастую превосходит ручной труд, а некоторые из них даже дополнительных денег не просят. И кофе пить не ходят.

Предлагаю на реальных примерах рассмотреть задачи, которые рано или поздно встают перед бизнесом и как с их решением может помочь искусственный интеллект.

Задача 1. Как увеличить конверсию из звонка в заказ?

Первым делом мы зайдём в отчёт по источникам трафика, выберем в качестве метрики% в сделки и выберем два последних месяца. Как видим — конверсия в сделки стала неуклонно падать.

Маленький шаг искусственного интеллекта — большой для аналитики

В то же время, если сопоставить процент сделок с количеством поступающих уникально-целевых звонков мы увидим, что тренды прямо противоположные.

Маленький шаг искусственного интеллекта — большой для аналитики

Здесь мне могут возразить и сказать о том, что логично, звонков в прошлом месяце было меньше, оттого и сделок в следующем меньше. И это правда, особенно в тематике с длинным циклом сделки, однако если мы добавим ещё месяц, то общая картина не изменится.

Маленький шаг искусственного интеллекта — большой для аналитики

Причина таких тенденций была обнаружена после начала прослушивания звонков. Оказалось, что перед тем, как на стороне колл-центра оператор поднимет трубку — срабатывает автоматическое приветствие и это событие воспринимается системой как целевое.

По факту же произошло следующее. В связи со спадом входящих обращений в период самоизоляции в компании сократили количество операторов. Это привело к тому, что когда спрос начал расти, то текущими силами операторы перестали справляться с входящими звонками и обрабатывали только те, на которые успели ответить.

В то же время, клиенты, которые пытались дозвониться — какое-то время слушали приветствие, музыку, а потом уходили к конкурентам.

Как в этом случае могли бы помочь технологии машинного обучения?

Задача состоит в том, чтобы помечать звонок целевым только в случае состоявшегося диалога между клиентом и оператором колл-центра.

Именно это и делает робот: он прослушивает запись на наличие в ней голоса клиента. При этом вы можете задать сколько времени должен звучать голос клиента для пометки звонка успешным.

Маленький шаг искусственного интеллекта — большой для аналитики

Конечно данный функционал не повышает конверсию напрямую, однако если бы бизнес вовремя увидел количество необработанных звонков, то вовремя бы нанял новых сотрудников и не упустил клиентов.

Задача 2. Как повысить эффективность менеджеров или колл-центра?

Повышать эффективность можно двумя способами: растить тех, кто хорошо работает и отказываться от тех, кто не справляется, а думает только об окладе.

Однако что делать, когда перед глазами пара сотен звонков, а информация о менеджере и результате разговора скрыта в записи разговора?

Опять же — использовать технологии. Если же всё-таки решитесь слушать вручную, не забудьте про возможность ускоренного прослушивания разговора — это сильно экономит время.

Итак, по факту перед нами встало две задачи:

  • Определить менеджера
  • Совершил ли клиент целевое действие во время звонка, будь то заказ или запись на приём.

Для первой задачи нам потребуется алгоритм, который скажет нам кто разговаривал с клиентом — Вася или Петя. Для того, чтобы машина начала «узнавать» ваших менеджеров, её нужно с ними познакомить. Точнее системе нужно «скормить» голоса всех ваших менеджеров.

Так как машинное обучение работает по принципу «найди максимально похожее», то при настройке важно добавить всех менеджеров и постоянно поддерживать их актуальность. В противном случае, если к Пете и Васе добавится Ваня, а система о нем не знает, то звонки, в которых он участвовал будут помечаться именем менеджера, чей голос будет максимально похож.

Маленький шаг искусственного интеллекта — большой для аналитики

Отлично, менеджера определили, как решить задачу определения его эффективности? Подключаем речевую аналитику. Она решает сразу несколько задач:

  • Быстрый просмотр содержания диалога по тексту
  • Текстовый поиск по содержанию звонков
  • Тегирование звонков с целевыми действиями.

Модель не нужно учить с нуля для перевода аудио в текст, а вот для корректного определения целевых действий в звонках — системе нужно на примерах показать, в каких звонках звонок заканчивался записью на приём или оформлением заказа. Именно на основе этих звонков модель и будет работать и обучаться дальше.

Маленький шаг искусственного интеллекта — большой для аналитики

После всех настроек мы можем строить отчёты по эффективности менеджеров и анализировать качество их работы.

Маленький шаг искусственного интеллекта — большой для аналитики

Задача 3. Как оптимизировать расходы на рекламу?

Задача сквозной аналитики — собрать в себе все необходимые данные для принятия управленческих решений. Одним из таких решений может быть — увеличение продаж или повышение рентабельности.

На основе данных о том, какой канал приносит больше сделок, а не только заявок, можно управлять кампаниями в рекламных кабинетах, но зачем, если этот процесс также можно отдать системам оптимизации?

Для настройки необходимо определить следующие параметры:

  • Кампании для оптимизации
  • Целевые действия (заявки, звонки, обратные звонки)
  • Метод автоматизации: автоматическое управление или рекомендательная система

Особенно хочу остановиться на третьем пункте. Чаще всего, когда мы используем автоматические стратегии или системы оптимизации, то нам необходимо довериться им и постоянно контролировать. Если вы хотите оставить всю власть себе и самостоятельно принимать решения об изменении ставок, то система рекомендаций — ваш выбор.

Маленький шаг искусственного интеллекта — большой для аналитики

Внедрённая сквозная аналитика не будет приносить пользы, если накопленные и сведённые данные не будут использоваться для управления рекламными бюджетами.

Поэтому логично использовать инструменты оптимизации и автоматические стратегии как внутри инструментов сквозной аналитики, так и на самих рекламных площадках.

В заключение

Если есть возможность не тратить огромное количество часов на рутину и исключить влияние человеческого фактора на ваш бизнес, то почему бы не начать это делать уже сегодня?

Наступило то время, когда для автоматизации процессов и увеличения вашей эффективности можно использовать готовые решения, которые работают на основе алгоритмов машинного обучения.

Современные технологии позволяют вам:

  • Контролировать загруженность колл-центра
  • Контролировать исполнение продающих скриптов
  • Выявлять эффективные приёмы продаж, на основе звонков, закончившихся целевым действием
  • Оптимизировать рекламу в автоматическом режиме или на основе рекомендаций алгоритмов.

А в связке с данными по конверсиям, уникально-целевым звонкам, ROI источников вы принимаете грамотные решения, а не доверяетесь интуиции. Используйте возможности искусственного интеллекта для бизнеса, чтобы добиваться результата.

1010
Начать дискуссию