Маркетинг Margo Berger
940

Как омни-канальному ритейлеру сегментировать клиентов по покупательской активности

Сегментация – это то, что усиливает эффективность маркетинга. Чем меньше сегмент, тем вероятнее вы решите ту самую проблему, которая интересует клиента, тем точнее будет ваш посыл. Но что делать омни-канальному ритейлеру, с которым тысячи покупатели контактируют и онлайн, и офлайн? Как их объединить, разбить на сегменты и найти пересечения – такими вопросами задался один из наших клиентов и вот как мы решили эту задачу.

В закладки

BUTIK. — это универмаг в центре Москвы, площадью 5 000 кв. м. и интернет-магазин одежды, обуви и аксессуаров. Всего в магазине представлено более 350 брендов. Компания первой в России объединила online и offline-магазин в единый сервис. Покупатели могут оформить заказ на сайте, забрать через час в универмаге в центре Москвы, получить его курьерской доставкой или заказать доставку в любой город России.

Задача: сегментировать клиентов в зависимости от их покупательской активности.

Зачем? Чтобы снизить долю рекламных расходов, продлить жизненный цикл клиентов и увеличить их LTV.

Как? С помощью персонализированной коммуникации с каждым из сегментов в цифровых каналах и каналах direct-маркетинга (email, sms, колл-центр).

Решение: объединить данные из Google Analytics и внутренней CRM, сформировать сегменты, наладить коммуникацию и построить отчеты по их результатам.

Объединяем данные

Все данные о поведении пользователей на сайте BUTIK. собирает и хранит в Google Analytics, а информацию об исполняемости заказов — во внутренней CRM-системе. Чтобы сегментировать клиентскую базу, нужно собирать эти данные в одной системе и группировать пользователей, основываясь на частотности и давности их покупок. Затем готовые сегменты передаются в рекламные сервисы для показа релевантной рекламы и персонализации коммуникаций в каналах direct-маркетинга.

Собирать и хранить данные аналитики BUTIK. решили в Google BigQuery – это хранилище доступно, безопасно и легко интегрируется с другими системами благодаря API.

Данные движутся по такой схеме:

  1. аналитики BUTIK. с помощью OWOX BI Pipeline передают в GBQ несемплированные данные о действиях пользователей на сайте практически в реальном времени.
  2. При помощи API и готовых библиотек аналитики импортируют из CRM в Google BigQuery следующие данные:
  • информацию обо всех сделанных и выкупленных заказах (online, offline и колл-центр).
  • UserID пользователей и их покупательскую активность (наличие или отсутствие заказов). Персональные данные (ФИО, пол, день рождения, email, телефон, дата регистрации, статус в программе лояльности, статусы подписки на email, sms и т.д.) хранятся на серверах BUTIK с тем же UserID.

Сегментируем

К классической логике RFM-сегментов решили применить дополнительные кастомные параметры, чтобы учесть тонкости fashion-retail и его омни-канальность.

Аналитики определили основные типы сегментов:

  • New Members — новые зарегистрированные пользователи без покупок.
  • Old Members — старые зарегистрированные пользователи без покупок.
  • New Buyers — клиенты, совершившие первую покупку.
  • Good Buyers — клиенты, покупавшие 3 раза и более за последние 6 периодов.
  • Very Good Buyers — клиенты, которые наиболее часто покупали за последние 6 периодов, с верхним порогом Transformation Rate (доля клиентов в сегменте, совершивших покупку в отчетном периоде). Например, клиент, покупавший в каждом периоде или в 4-5 периодах из 6 последних.
  • Casual Buyers — клиенты, покупавшие в 1-2 периодах из последних 6.
  • Sleep — люди, не покупавшие последние 6 периодов подряд.
  • Inactive — люди, не покупавшие последние 12 периодов подряд.

Период – это среднее количество дней между двумя соседними заказами. Аналитики рассчитали отдельно, сколько дней проходит между заказами в online, сколько в offline и взяли их средневзвешенное .

Потом создали схему переходов пользователей из одного сегмента в другой. Это нужно, чтобы видеть миграцию пользователей между сегментами по результатам коммуникаций с клиентской базой в цифровых каналах, например, контекстной рекламе, и каналах директ-маркетинга.

Зеленые стрелки показывают долю пользователей, которая перешла в более активный сегмент, а красные – в пассивный. Например, на схеме видно, что 15% зарегистрировавшихся пользователей (New Members) делают первую покупку и становятся New Buyers (повышение качества). А 86% людей, которые сделали первую покупку в прошлом периоде, в анализируемом периоде ничего не купили и в результате перешли в сегмент Casual Buyers (снижение качества).

С помощью нескольких SQL-запросов аналитики OWOX BI сформировали из полученных данных таблицу с основными показателями эффективности для каждого сегмента:

  • количество пользователей в сегменте и его доля в клиентской базе;
  • количество заказов (оформленных и выкупленных) в сегменте;
  • средний чек;
  • количество заказов на пользователя;
  • сумма заказов и доля сегмента в общем обороте;
  • изменение численности сегмента (темп прироста).

Формируем отчеты

Для удобного использования сформировали три отчета.

  • Количество пользователей, которые сменили сегмент или остались в прежнем.
Здесь параметр StartSegment означает сегмент в предыдущем периоде, параметр EndSegment — сегмент пользователей в текущем периоде, а метрика Clients — количество пользователей.
  • Данные по каждому пользователю за определенный период.
Это актуальный список всех покупателей, которые вошли в каждый из 9 сегментов. Он включает их персональные данные, необходимые для прямых коммуникаций:
  • ФИО;
  • пол;
  • еmail;
  • телефон;
  • день рождения;
  • статус в программе лояльности;
  • средний чек;
  • сумма накопленных бонусов.

Персональные данные хранятся на серверах BUTIK., а в качестве ключа для связки с данными из Google BigQuery используется UserID.

Данные из этой таблицы используются для запуска персонализированной рекламы под каждый сегмент пользователей.

  • Метрики покупательской активности по каждому сегменту за два периода – анализируемый и предыдущий.
Отчет нужен, чтобы отслеживать изменения важных KPI в каждом сегменте:
  • Доход, который генерирует сегмент, и его доля в общем обороте компании.
  • Частотность покупок и средний чек.
  • Процент выкупа — долю оформленных заказов, которые были оплачены.
  • Динамику численности сегментов. Позитивная динамика – это прирост пользователей в активных сегментах (Good Buyers, Very Good Buyers, New Buyers) и сокращение в пассивных (Sleep, Inactive, Casual).

Результаты

Теперь вся информация о клиентах BUTIK. собрана в одном месте, а отчеты формируются автоматически, что экономит время маркетологов. Благодаря новым отчетам стало гораздо проще отслеживать и анализировать важные KPI и изменения в поведении в разрезе сегментов и каждого клиента.

Теперь маркетологи BUTIK. в зависимости от сегмента и поведения пользователя внутри этого сегмента могут:

  • не показывать рекламу тем, кто и так с большой вероятностью купит товар;
  • показывать специальные предложения тем, кто сомневается или давно не покупал;
  • фокусировать усилия на тех, кто не покупает, но имеет высокий потенциал;
  • не тратить силы на тех, кто маловероятно принесет прибыль.

Материал опубликован пользователем. Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Margo Berger", "author_type": "self", "tags": [], "comments": 6, "likes": 18, "favorites": 19, "is_advertisement": false, "subsite_label": "marketing", "id": 48946, "is_wide": false, "is_ugc": true, "date": "Tue, 23 Oct 2018 18:43:29 +0300" }
{ "id": 48946, "author_id": 137270, "diff_limit": 1000, "urls": {"diff":"\/comments\/48946\/get","add":"\/comments\/48946\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/48946"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199113 }

6 комментариев 6 комм.

Популярные

По порядку

Написать комментарий...
1

Здравствуйте, спасибо за кейс. Интересно вот что: в Google Analytics данные аггрегированные и, насколько мне известно, его API не позволяет получить данные по поведению в разрезе конкретных людей (clientID). Как вы объединяете аггрегированные данные GA с персонализированными данными вашей CRM?

Ответить
4

Мы собираем несемплированные и неагрегированне дынне которые содержат в себе идентификаторы пользователей clientID и userID c помощью OWOX BI Pipeline https://www.owox.ru/products/bi/pipeline/google-analytics-to-google-bigquery-streaming/.

Объединение данных происходит по UserID. О том, как связать офлайн покупки с онлайн посетителями можно прочитать в нашей статье https://www.owox.ru/blog/articles/integrate-online-offline/

Ответить
0

Я совсем далек от этих вещей подскажите кто знает:

Теперь у маркетологов есть обновляемые и сегментированные списки с даными покупателей, имя итд, как они будут показывать им рекламу? Например контекстную или в сетях? Как дальше происходит работа маркетологов? И емайлами понятно.

Ответить
3

Конкретно в этом кейсе упор делался именно на использование сегментов для имейл-рассылок. Но кроме этого можно отправлять список и в AdWords (передаете сегмент в Google Analytics и там уже можно настроить аудиторию для рекламной кампании). В Я.Аудитории и FB тоже можно настраивать рекламу по сегментам.

В зависимости от того, на каком шаге воронки находится пользователь, как часто совершает покупки, маркетолог меняет посылы рекламных кампаний, делает их более пресонализированными. И таким образом подталкивает к новой покупке. Или наоборот может отключать рекламу для тех сегментов, для которых она будет неэффективна.

Ответить
0

Правильно ли понял, изначально данные собираются в аналитикс и каждому пользователю присваевается ID, потом данные нужным образом сегментируются и заливаются в к примеру в адвортс, ключем будет тот же ID пользователя.

Ответить
1

С помощью OWOX BI Pipeline данные собираются параллельно в GA и BigQuery. Да, ключем будет clientID. В GA можно передавать сегмент пользователей через Data Import, например clientID | название сегмента. А потом на основе этих данных можно сформировать аудиторию и передать ее в AdWords.
Так же с Я.Аудиториями, но там мы собираем yandex ID , связываем его с UserID и передаем в Я.Аудиториями

Ответить
0
{ "page_type": "article" }

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Компания отказалась от email
в пользу общения при помощи мемов
Подписаться на push-уведомления
{ "page_type": "default" }