«Нейронные сети, искусственный интеллект, машинное обучение: что это на самом деле?»

Когда приложение уверяет вас, что работает на «искусственном интеллекте», на минутку кажется, что вы в будущем. Но что это на самом деле означает?

Мы разбрасываемся громкими словечками — искусственный интеллект, машинное обучение, нейронные сети — но что они на самом деле означают и действительно ли помогают улучшать приложения? Совсем недавно Google и Microsoft добавили обучение нейронных сетей в свои приложения перевода. Google утверждает, что использует машинное обучение, предлагая списки воспроизведения. Todoist говорит, что использует ИИ, чтобы предположить, когда вы должны закончить задачу. Any.do заявляет, что ее искусственный интеллект может делать некоторые задачи вместо вас. Часть маркетинговых уловок звучит впечатляюще и остается уловками, но иногда изменения, бесспорно, полезны.

Что такое нейронные сети?

Искусственные нейронные сети (ИНС, или просто «нейронные сети») относятся к определенному типу модели обучения, которая эмулирует принцип работы синапсов в вашем мозге. Традиционные вычисления используют ряд логических операторов для выполнения задачи.

Нейронные сети не панацея, но они прекрасно справляются со сложными данными. Google и Microsoft используют нейронные сети, чтобы обучать свои приложения перевода, поскольку перевод языков — это сложно. Мы часто видели плохие машинные переводы, но нейронные сети обучаются улучшать эти переводы, исходя из правильных переводов, с течением времени. То же самое происходит с переводом речи в текст. После того как была представлена нейронная сеть, работающая с Google Voice, ошибки в переводах снизились на 49%. Эти системы не идеальны, но они работают над собой, и это главное.

Что такое машинное обучение?

Машинное обучение — это широкий термин, который охватывает все моменты, когда вы пытаетесь научить машину улучшаться самостоятельно. В частности, это относится к любой системе, в которой производительность компьютера при выполнении задачи становится лучше только за счет большего опыта выполнения этой задачи.

Нейронные сети являются примером машинного обучения, но они не являются единственным способом обучения компьютера.

Например, один из альтернативных методов машинного обучения называется обучение с подкреплением. В этом методе компьютер выполняет задачу и затем оценивает ее результат. Если, например, компьютер побеждает в шахматы, то он присваивает выигрышное значение серии ходов, которые использует во время игры. Сыграв миллионы игр, система может определить, какие шаги, скорее всего, приведут к победе, основываясь на результатах предыдущих игр.

Применение нейронных сетей

Область применения искусственных нейронных сетей с каждым годом все более расширяется, на сегодняшний день они используются в таких сферах как:

- Машинное обучение (machine learning), представляющее собой разновидность искусственного интеллекта. В основе его лежит обучение ИИ на примере миллионов однотипных задач. В наше время машинное обучение активно внедряют поисковые системы Гугл, Яндекс, Бинг, Байду. Так на основе миллионов поисковых запросов, которые все мы каждый день вводим в Гугле, их алгоритмы учатся показывать нам наиболее релевантную выдачу, чтобы мы могли найти именно то, что ищем.

- В роботехнике нейронные сети используются в выработке многочисленных алгоритмов для железных «мозгов» роботов.

- Архитекторы компьютерных систем пользуются нейронными сетями для решения проблемы параллельных вычислений.

- С помощью нейронных сетей математики могут разрешать разные сложные математические задачи.

Нейронные сети и искусственный интеллект
Нейронные сети и искусственный интеллект

#3дпрототипирование, #3дмоделирование, #3dпрототипирование, #3dмоделирование, #протитип, #прототипирование, #созданиепротитипа, #КБ, #кб, #конструкторскоебюро, #изготовлениедеталей, #импортозамещение, #изготовлениеназаказ, #КБСПБ, #KBSPB, #3дпрототипспб, #спбпрототип

44
2 комментария

Нужно при этом понимать что ничего общего с человеческим мозгом там нет.

3