Искусственный интеллект: погружение. Что стоит за каждым типом обучения?

Искусственный интеллект (AI — artificial intelligence) в широком понимании — это собирательный термин для информационных систем, которые могут осознавать своё окружение, обучаться, думать и в качестве ответа предпринимать действия в соответствии со своими целями.

Ключевая особенность ИИ — способность к обучению. Именно это качество отличает его от продвинутых алгоритмов, которые используются для проведения скоринга, распознавания речи, создания изображений и даже от виртуальных помощников, дающих заранее заготовленные советы в разных жизненных ситуациях.

Искусственный интеллект: погружение. Что стоит за каждым типом обучения?

Подразделы искусственного интеллекта

В зависимости от методов, при помощи которых ИИ обучается, выделяют несколько его подразделов:

  • машинное обучение;
  • глубокое обучение;
  • нейронные сети;
  • обработка естественного языка;
  • компьютерное зрение.

Иногда термин «искусственный интеллект» и названия подразделов употребляют как взаимозаменяемые, но в действительности все они являются частным случаем искусственного интеллекта.

Разберём отдельно, что стоит за каждым типом обучения.

Машинное обучение (Machine Learning, ML) — основано на разработке алгоритмов и моделей для поиска скрытых закономерностей. Процесс обучения происходит через обобщение множества пожих примеров. ML-системы работают тем лучше, чем больше знаний об исследуемых объектах они накопили. Машинное обучение используется, когда необходимо научить модели распознавать изображения, рекомендовать контент, выявить подозрительную активность и многое другое.

Глубокое обучение (Deep Learning, DP) — вид машинного обучения с использованием многослойных нейронных сетей, которые могут самостоятельно находить алгоритм решения задачи. Чтобы добиться эффективности и точности процесс обучения требует больших массивов данных.

Нейросети (Neural Networks, NN) — это модели, строящиеся по принципам работы человеческого мозга. Как мозг состоит из нейронов и синапсов, так множество вычислительных центров соединяются и взаимодействуют между собой в нейросети. Обычно NN имеют несколько слоёв, что даёт возможность вести параллельную обработку информации. Нейросети обучают на размеченных наборах данных с явными закономерностями, после чего ИИ может обрабатывать неразмеченные данные.

Обработка естественного языка (Natural Language Processing, NLP) — направление, возникшее на стыке машинного обучения и математической лингвистики. Естественный язык — язык, используемый людьми, и при этом обеспечивающий связь с системой ИИ. Непосредственно обработка языка состоит из компонентов понимания и генерации. Качественная генерация предполагает способность анализировать и резюмировать любые источники неструктурированных данных.

Компьютерное зрение (Computer Vision, CV) — область машинного обучения, которая наделяет информационные системы способностью «видеть» и извлекать информацию из визуальных образов. Модели автоматизируют задачи, для которых люди используют зрение: посмотреть на фото, определить, что на нём изображено, интерпретировать полученную информацию. В качестве учебных материалов выступают картинки и видеофильмы. Главная задача — собрать, обработать, проанализировать и понять цифровые изображения, извлечь данные, которые в них содержатся.

Сильный и слабый

Понятие ИИ (AI) относится к моделям, созданным для решения конкретной проблемы или предоставления опредёленной услуги. К примеру, ChatGPT учится делать общение в чате лучше, но не может обучиться другим задачам. Такой ИИ ещё называют слабым или узким (Narrow AI).

Есть ещё термин «искусственный интеллект общего назначения» (artificial general intelligence — AGI) или сильный ИИ. Это программное обеспечение, способное изучить любую предметную область и решить любую задачу.

Концептуально AGI способен к самообучению, может ставить себе новые цели, определять пути их достижения и оценивать качество результата. Сильный ИИ должен также уметь действовать в условиях неопределённости.

AGI пока не существует, а в ИТ-индустрии идут дискуссии, как его создать, и можно ли в принципе это сделать. К списку ограничений для создания сильного ИИ относят как фундаментальные проблемы методологии и архитектуры, так и ограниченный доступ к высокопроизводительным вычислительным ресурсам. Кроме того, прообраз ИИ — человеческий разум, но мышление людей в основном неалгоритмично, и это создаёт дополнительные сложности.

Подписывайтесь на телеграм-канал Veligera, чтобы не пропустить последние новости их мира венчурных инвестиций и технологий!

33
Начать дискуссию