Тогда мы расширили команду проекта. К двум специалистам и интернет-маркетологу присоединился трафик-менеджер, который координировал контекст — управлял кампаниями, отслеживал эффективность рекламы и оперативно ставил задачи. Так на базе агентства получилась полноценная инхаус-команда, которая не отвлекалась на другие проекты, но при этом постоянно обменивалась опытом с коллегами — это позволило быстрее и качественнее проводить тесты, глубже анализировать данные и строить больше гипотез.
Добрый день!
Спасибо за ваш ответ)
В кейсе мы обозначили задачу, которая стояла перед командой и подход к решению. Мы добились результата через множество тестов разных каналов и инструментов:
⁃ Медийная реклама, как помощь охватить верхний уровень воронки и отстроиться от конкурентов
⁃ Контекстная реклама (в кейсе мы подробно рассказали о том, что в нашем случае машинное обучение кампаний показало себя более эффективным в решении задачи)
Отвечаю на ваш вопрос по поводу использования машинного обучения: главное, это убедиться в корректной настройке аналитики и передаче всех важных конверсий для KPI в рекламный кабинет, иначе все труды будут напрасны. Раскрыть тонкости работы машинного обучения мы не можем, так как это алгоритм Яндекса, которые он сам не раскрывает.
Дичь какая-то. Совершенно не ясно причём здесь машинное обучение и как оно использовалось.
Одно слово написали. Зато 99,9 какие вы хорошие.
Максимально бесполезная статья.
И вообще, статьи про машинное обучение так не пишутся. Как смысл сообществу от вашей статьи??
Технических нюансов нет. Бизнес нюансов нет.
Пустая и бесполезная статья, напичканная похвальбой.