Далее появилась задача, как эти данные забирать непосредственно из GA. Можно сделать это напрямую по API Google.Analytics, но в этом случае придется писать свое решение, которое нужно, во-первых, разработать, во-вторых, периодически обновлять и поддерживать, а в-третьих можно столкнуться с лимитами подключений по API. Но основной минус – это трудозатраты, при том, что на рынке уже есть готовые решения для таких задач.
Следил за client ID в сырой метрике на нескольких сайтах. Один и тот же идентификатор присваивается только одинаковым браузерам и устройствам. Ни разу не встретил такого, чтобы устройства или браузеры были разными. Сделал вывод, что кроссдевайс и кроссбраузер не работает. Был бы рад увидеть опровержения
Всё так и есть. Как в GA, так и в Метрике есть проблема с кроссбраузерностью и кроссплатформой. Даже если провести простой эксперимент, зайти сначала с мобильного, потом с десктопа, то вряд ли в истории пользователей это будет один и тот же юзер. Хотя если просматривать выборочно разных пользователей, то можно увидеть заходы с мобильного устройства и десктопа. Пока это остается в рамках погрешности. В e-commerce это решается просто, достаточно присвоить user id при авторизации.
Комментарий недоступен
Айдар, а вы ставили блокировку ботов? Я туда два сайта добавил, потом на один зашел через инстаграм и он определил меня как бота. Досадно было очень=(( Поэтому отказался от их услуг
Очень интересно описали ваши инструменты.
спасибо )
А вы можете посмотреть всю воронку относительно конкретного источника?
Я имею в виду, что вот вы забрали Client ID, посмотрели first click, сравнили данные с CRM, увидели тех, кто совершил целевое действие (заявка, звонок), а вот дальше как?
Только в отдельный отчёт ручками собирать для каждого канала целевых клиентов и смотреть как они двигаются по воронке?
По опыту: заявок может быть много с какого то канала, а на выходе мы имеем, что креатив был неправильный. Условно у нас квартира стоит 15 млн, а там написали 5 млн. Звонков куча, канал отрабатывает отлично, каждый третий целевой, а на выходе мы имеем, что денег у данной ЦА неть.
Как эту проблему решали?
Что касается firstclick, то это интересно смотреть только на уровне ДДУ, а не целевых звонков. А если говорить про анализ каналов, то тут мы используем другой отчет, где смотрим траты по каждому рекламному источнику и динамику обращений по дням с общей воронкой обращений в брони в рамках одного источника по заданному периоду. Как раз на таком графике можно увидеть отклонения от нормы, идут ли целевые звонки, которые конвертируются в брони или "звоночки", которых много и со всплесками по дням и в итоге никуда не конвертируются. А дальше уже можно анализировать глубже до уровня креативов.