В России исследованиями в области квантовой физики занимается Российский квантовый центр, открытый в 2010 году. Летом 2017 года его руководитель Михаил Лукин объявил, что совместно с учеными из Гарвардского и Массачусетского технологических университетов был создан и протестирован квантовый элемент на 51 кубит. Созданное устройство пока является самой сложной вычислительной системой такого рода. Но вместе с этим – это все еще не квантовый компьютер.
Помимо РКЦ фундаментальные научные изыскания осуществляются на базе МГУ (кафедра суперкомпьютеров и квантовой информатики), СПбГУ (факультет прикладной информатики), Институт физики твердого тела РАН.
В российских вузах также существует методика работы, связанная с развитием прикладных аспектов квантовых технологий и внедрением разработок в реальную жизнь. В какой-то степени мы реализуем американскую модель spin-off, когда молодые сотрудники создают фирмы на базе университетов для коммерциализации научных разработок.
Сегодня квантовые технологии уже появляются в открытом доступе. Корпорация IBM открыла доступ к своему квантовому компьютеру. Так что учёные и исследователи всего мира могут производить там свои вычисления. Но даже если у вас нет глубоких познаний в квантовой физике, вы всё же можете уже попробовать новейшие технологии - у вас есть возможность сыграть партию в квантовые шахматы. Это модификация обычных шахмат, добавляющая на шахматную доску законы квантовой механики. Фигуры могут находиться на нескольких клетках одновременно; быть одновременно живыми и мертвыми, как кот Шредингера; проходить "сквозь" друг друга; находиться в состоянии квантовой запутанности и мгновенно коллапсировать при измерении.
В тот момент, когда квантовые компьютеры перейдут из разряда научных исследований в разряд промышленных решений, потребуются программисты, которые на базе данной платформы смогут разрабатывать эффективные информационные системы. В First Line Software мы намерены побороться за лидерство в этой области.
"Размеры «точек» действительно микроскопические, сейчас минимальная цифра — 7 нанометров (это миллиардные части метра). И чем меньше значение, тем компактнее чипы. Но уменьшение не может быть бесконечным, оно ограничено размером атома."
ИМХО: На самом деле, 7нм это маркетинг. Реально в таком процессе используется фотолитография в глубоком ультрафиолете 193нм. А уменьшение ограничено не размером атома, а длиной волны электрона. В кремнии это примерно 10нм. Ниже этой длины канала в транзисторе электрон будет перепрыгивать через потенциальный барьер канала с некоторой вероятностью.
ИМХО2: В тексте говорится про 51-кубитную квантовую систему, но в том же году уже была представлена 53-кубитная квантовая система другого коллектива https://www.nature.com/articles/nature24654
До практического применения надо запутать сотни, тысячи кубит.
Дмитрий приветствую.
Спасибо за комментарий. Я привел в своей презентации примеры наиболее известных физических реализаций квантовых компьютеров. 53-кубитный квантовый симулятор, о котором пишете Вы, это интересное решение. Я правда не до конца понял из статьи - есть его физическая реализация или это все же симулятор? У Вас нет более подробной информации по данной разработке?
По поводу практического применения - пока есть две проблемы - это стабильное "производство" запутанных частиц и борьба с декогеренцией. Пока что и там и там разработчики испытывают сложности. Как-только эти проблемы будут решены, построение 100+ кубитных машин перейдет на промышленный уровень, по моей оценке.
С уважением,
Владимир Литошенко
Ничего не понял. Но оставлю комментарий для истории.