Маркетинг Retail Rocket
1 754

Кейс интернет-магазина «Буквоед»: рост выручки до 5,8% благодаря персональным рекомендациям

Оказываясь в книжном магазине, многие не могут остановиться на чем-то одном: глаза разбегаются, хочется всего и сразу. В интернет-магазине на пользователя действуют не меньше отвлекающих факторов. Как помочь клиенту сделать выбор и попутно поднять выручку? Рассказываем о проекте персонализации сайта Bookvoed.ru и росте выручки на 5,8%.

В закладки

Книжная сеть «Буквоед» — это современный культурный оператор, который 24 часа в сутки сохраняет, поддерживает и транслирует высшие культурные ценности для развития полноценного интеллектуального общества.

Интернет-магазин «Буквоед» предлагает более 2 млн книг на всех языках мира, его посещают более 1 млн уникальных посетителей в месяц. Чтобы каждый пользователь нашел идеальную книгу в широком ассортименте, сайт использует персонализированные рекомендации Retail Rocket на ключевых страницах. Сегодня мы расскажем о тестировании нескольких алгоритмов в карточке товара и на странице поиска.

Карточка товара

Во многом роль консультанта розничного магазина в интернете выполняет карточка товара. Здесь потенциальный клиент может увидеть все характеристики товара, фотографии и отзывы других покупателей.

До сих пор преимущество розницы было в том, что консультант может порекомендовать в режиме реального времени альтернативные товары, если рассматриваемый по каким-то причинам не подходит. В онлайне все иначе: клиенту гораздо проще уйти к другому магазину, если его не устраивает увиденное.

Персональные рекомендации смогут это исправить. Алгоритмы Retail Rocket подстраиваются под каждого покупателя и показывает ему наиболее подходящие товары, значительно повышая продажи.

Кейс 1. Тестирование алгоритмов рекомендаций в карточке товара

В рамках оптимизации работы рекомендательной системы на сайте Bookvoed.ru мы провели исследование эффективности разных алгоритмов в блоке рекомендаций в карточке товара магазина.

Исследование эффективности проводилось с использованием механики A/B-тестирования. Все посетители сайта случайным образом делились на пять сегментов:

Первому сегменту показывались похожие товары:

Второму сегменту показывались сопутствующие товары:

Третьему сегменту показывались два блока одновременно — похожие и сопутствующие товары:

Четвертому сегменту показывались те же два блока, но в другом порядке: сначала сопутствующие, а ниже — похожие товары:

Пятому сегменту рекомендации не показывались. Он выступал в качестве контрольной группы.

Результаты

По итогам тестирования были получены следующие результаты:

Согласно результатам тестирования, применение механики «Сопутствующие товары» в блоке рекомендаций в карточке товара интернет-магазина Bookvoed.ru увеличивает конверсию на 4,8% со статистической значимостью 97,3%. В сочетании с незначительным снижением среднего чека, это приносит прогнозируемое увеличение выручки на 4,76%.

Кейс 2. Настройка рекомендаций сопутствующих товаров в карточке товара интернет-магазина Bookvoed.ru

После выбора наиболее эффективного алгоритма можно приступать к более тонкой его настройке механики, чтобы выяснить, какой вариант даст лучший результат. Мы исследовали эффективность различных вариаций алгоритмов сопутствующих товаров в соответствующем блоке карточки товара магазина.

Исследование эффективности проводилось с использованием механики A/B-тестирования, при которой все посетители сайта случайным образом делились на три сегмента:

Первому сегменту показывались сопутствующие товары, персонализированные с учетом интересов пользователя:

Второму сегменту показывались персонализированные сопутствующие товары из категорий, отличных от категории просматриваемого товара:

Третьему сегменту показывались стандартные сопутствующие товары. Этот сегмент взят за контрольную группу, поскольку он победил по итогам предыдущего теста:

Результаты

По итогам тестирования были получены следующие результаты:

Согласно результатам тестирования, применение механики «Сопутствующие товары, персонализированные с учетом интересов пользователя» в блоке рекомендаций в карточке товара интернет-магазина Bookvoed.ru увеличивает конверсию на 2,5% со статистической значимостью 87%. В сочетании с ростом среднего чека на 3,2% это дает прогнозируемый рост выручки на 5,8%.

Кейс 3. Тестирование эффективности рекомендаций товаров на странице поиска интернет-магазина Bookvoed.ru

Данные поиска интернет-магазина очень важны для понимания интересов покупателя. С их помощью можно провести эффективную кампанию по персонализации, которая значительно повысит средний чек. Главный секрет — использование правильного алгоритма.

Для повышения эффективности рекомендательной системы поиска Bookvoed.ru мы решили использовать поисковые рекомендации, основанные на интересах пользователей сайта. Исследование эффективности проводилось с использованием механики A/B-тестирования. Все посетители сайта случайным образом делились на два сегмента:

Первому сегменту показывались поисковые рекомендации:

Второй сегмент был контрольной группой, рекомендации пользователям не показывались.

Результаты

По итогам тестирования были получены следующие результаты:

Согласно результатам тестирования, применение механики «Поисковые рекомендации» в блоке рекомендаций на странице поиска интернет-магазина Bookvoed.ru увеличивает средний чек на 3,8%. В сочетании с незначительным снижением конверсии на 0,7% это обеспечивает магазину прогнозируемый рост выручки на 3,1%.

Комментарий Bookvoed.ru

Технологии персонализации позволяют нам стать ближе к нашему клиенту, лучше понять потребности и предложить именно то, что ему нужно. Спасибо команде Retail Rocket за качественный продукт и профессионализм в работе. Персональные рекомендации помогают нам увеличивать показатели конверсии, размер среднего чека и выручку магазина.

Евгений Михальский
заместитель руководителя интернет-магазина сети «Буквоед»

#маркетинг #кейсы #retailrocket

Материал опубликован пользователем. Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Retail Rocket", "author_type": "self", "tags": ["\u043c\u0430\u0440\u043a\u0435\u0442\u0438\u043d\u0433","\u043a\u0435\u0439\u0441\u044b","retailrocket"], "comments": 8, "likes": 6, "favorites": 24, "is_advertisement": false, "subsite_label": "marketing", "id": 46677, "is_wide": false }
{ "id": 46677, "author_id": 121846, "diff_limit": 1000, "urls": {"diff":"\/comments\/46677\/get","add":"\/comments\/46677\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/46677"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199113 }

8 комментариев 8 комм.

Популярные

По порядку

Написать комментарий...
1

круто, а нормальный поиск будет по сайту?

Ответить
0

На это мы, к сожалению, повлиять не можем, но передадим информацию представителям магазина.
А блок с рекомендациями как раз наш - помогает найти нужное.

Ответить
0

спасибо за ответ :)

Ответить
0

А сколько по времени проводили тестирования?

Ответить
0

Екатерина, каждый тест проводится в течение нескольких недель, до достижения статистической достоверности.

Ответить
0

Для меня косяк буквоеда в следующем: заказывая книги через интернет-магазин с получением в ближайшем магазине, я не могу забрать их в этот же день. Даже если эти книги есть в наличии в этом магазине. Доставка в день заказа - иногда весомый плюс. У Озона, например, такая практика есть.

Ну а фраза "на всех языках мира" в статье, конечно же, преувеличена.

Ответить
0

Крутую работы проделали, молодцы! А по каким принципам вы выбирали перонализацию по интересам? Исходя из чего?:)

Ответить
0

Спасибо! Исходя из интересов =) Учитываются интересы пользователей к категориям, товарам, свойствам товаров, таким как цена, бренд и т.д.

Ответить
0

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Нейронная сеть научилась читать стихи
голосом Пастернака и смотреть в окно на осень
Подписаться на push-уведомления