Маркетинг Alla Vulah
971

Как алгоритмы машинного обучения Plazius увеличивают выручку ресторанов

Главный тренд цифрового маркетинга последних лет — персонализация коммуникаций с клиентами. В ресторанном маркетинге это особенно актуально: не стоит предлагать скидку на стейк из лосося тому, у кого аллергия на рыбу. А предложение на лаймовый чизкейк, который гостю понравился в прошлый раз, привлечет внимание и может стать поводом зайти в ресторан снова.

В закладки

Основная сложность такой персонализации в необходимости обработать большие объемы данных и на основе них сформировать предложения. На основе отчетов Plazius маркетологи могут делать это сами: Plazius интегрирован с кассовым ПО, так что в CRM хранятся данные об истории и составе заказов. Но сегментация базы вручную потребует очень долгой и кропотливой работы с Excel’ем.

Так внутри Plazius родилась идея смарт-акций: мы разработали алгоритм машинного обучения, который анализирует историю посещений гостей, разделяет аудиторию на сегменты на основе предпочтений и настраивает для каждого сегмента персональные акции.

Предсказываем, гость перестал ходить или просто редко посещает?

Любой владелец бизнеса знает, что одна из черных дыр выручки — это клиенты, которые перестали покупать. В случае с рестораном — это гости, которые перестали ходить. Традиционно отток определяется как число гостей, которые не приходили за фиксированный промежуток времени (например, за месяц). Но при таком подходе в список ушедших гостей попадут гости, которые редко ходят (ужинают семьей в ресторане раз в 2 месяца). Воздействовать на таких гостей с помощью акций по возврату ушедших нецелесообразно — редкие гости придут и без дополнительной мотивации, а ресторан потеряет выручку на скидках для тех, кто придет и без этого. С другой стороны, если гость ходит раз в неделю, то уже 2 недели без посещений могут быть сигналом, что что-то не так, и ждать несколько месяцев, пока сработает триггер “гость ушел”, нецелесообразно.

Чтобы точно определять гостей, которые нарушили свою обычную регулярность посещения заведения, алгоритм анализирует историю визитов каждого гостя по примерно 400 параметрам и предсказывает, какие гости не вернутся в течение ближайшего месяца. Такой подход позволяет ориентироваться не просто на время без посещений, но тонко учитывает привычки гостя. Последующие тесты показали, что точность прогнозов алгоритма составляет 97%.

Возвращаем гостей

Важно понять, что может быть много разных причин, по которым гости перестали ходить в ресторан. Чтобы их вернуть, нам нужно предложить им что-то, что точно им понравится. Очевидно, что если корректно выделить в истории заказов гостей их персональные предпочтения и на их основе предложить акции, то гости с большей вероятностью захотят вновь прийти и попробовать любимые блюда, чем при шаблонной акции.

Поэтому мы начали сегментировать аудиторию по предпочтениям. При этом наши эксперименты позволили вывести следующие принципы:

  • В приоритете “свежие” предпочтения гостя. Если гость полгода назад заказывал бургеры, а потом перешел на салаты, то алгоритмы учтут, что он перешел на ЗОЖ, и стоит ему помочь в этом.
  • Если гость не отдает предпочтения конкретному блюду, но часто заказывает блюда из одной категории (позавчера был Греческий, вчера — Нисуаз, сегодня — Цезарь), то мы считаем его любителем категории (в этом случае — Салаты).
  • Если заказы гостя равномерно распределены между категориям — у гостя нет четких вкусовых предпочтений.

Для каждого сегмента автоматически создаются акции с персональным предложением по любимому блюду или любимой категории. Гости оповещаются об акции с помощью SMS рассылки. Для контроля эффективности в каждом сегменте случайным образом выделяется контрольная группа, которая не получает никаких предложений. Именно сравнение с результатами в контрольной группе показывает эффективность предложений.

Эффективность

Мы пригласили к тестированию новых возможностей одного из наших самых прогрессивных клиентов — сеть кафе-пекарен “Хлеб Насущный”. Акция для различных сегментов гостей длилась 7 дней, а еще 2 недели мы отслеживали как вели себя вернувшиеся гости.

Мы считаем эксперименты с различными инструментами повышения частоты визитов и среднего чека обязательной частью нашей стратегии. Мы и так постоянно работаем над снижением оттока, и конечно было интересно попробовать автоматизацию и персонализацию в решении этой задачи. В итоге мы получили любопытные результаты по сравнению с контрольной группой:

— в основной группе вернулось на +23,6% больше гостей

— в основной группе совершено на +29,5% больше заказов

В основной группе рост выручки составил +22,6% по сравнению с контрольной группой.

Алексей Панов
директор по digital-маркетингу сети «Хлеб Насущный»

Что интересно, самый большой прирост по выручке (+61,37%) дала выборка гостей, у которых выявлено любимое блюдо (экстра-выручка на 1 представителя аудитории в сегменте без вкусовых предпочтений составила +27,34%). Можно предположить, что подобный эффект вызван тем, что тонко персонализированное предложение вызвало желание вернуться и вновь попробовать любимое блюдо.

Важно понимать, что экономически акции со скидкой на любимое блюдо гораздо целесообразнее, чем скидка на весь чек. Это объясняется тем, что получив скидку на любимое блюдо, вместе с ним гость заказывает и другие блюда, и общая скидка снижается. А скидка на весь чек значительно сокращает выручку заведения.

Что нужно для запуска смарт-акций Plazius?

Чтобы ресторатор мог воспользоваться автоматизацией персонализированных акций, нужно соблюсти несколько условий:

  • Plazius работает в ресторане не менее 6 месяцев. Обычно за этот срок накапливается достаточно данных для анализа предпочтений гостей.
  • Не менее 7500 гостей используют Plazius и дали согласие на отправку SMS рассылок. С меньшей базой гостей смарт-акции будут работать не так эффективно.

А что дальше?

Дальше мы хотим сделать автоматизацию персональных акций доступной для всех ресторанов. Так мы поможем заведениям удерживать клиентов и сохранять персональный подход, а гостям — получать самые привлекательные для них предложения.

Материал опубликован пользователем. Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Alla Vulah", "author_type": "self", "tags": [], "comments": 21, "likes": 4, "favorites": 11, "is_advertisement": false, "subsite_label": "marketing", "id": 50903, "is_wide": false, "is_ugc": true, "date": "Thu, 15 Nov 2018 12:38:35 +0300" }
{ "id": 50903, "author_id": 221865, "diff_limit": 1000, "urls": {"diff":"\/comments\/50903\/get","add":"\/comments\/50903\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/50903"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199113, "possessions": [] }

21 комментарий 21 комм.

Популярные

По порядку

Написать комментарий...
1

Биг дата, машин лернинг. Надо сделать так, чтобы в приложении, когда вводишь код с чека, баллы бы накапливались, а не списывались. А то вы начали думать, что я перестал ресторан посещать, а на самом деле я плазиус ваш снес.

Ответить
0

Алгоритмы работают для любых методов авторизации, как приложения, так и карт. Случаев, когда гость снес приложения и перестал пользоваться картой, но посещает кафе очень мало. Безусловно, они вносят погрешность, но даже в этом случае, если гость захочет воспользоваться акцией, то он скачает приложение / восстановит карту. А значит - снова будет вовлечен в программу лояльности. И это тоже хорошо.

Ответить
1

Реальность такова: в кафе, в которое я хожу, большая часть посетителей ничего не знает об этой программе лояльности. Да и не хочет знать, наверное. А персонал не хочет сообщать о ней. А еще я вам рассказал о том, что ваше приложение настолько плохо сделано, что вместо накоплений списывает баллы. Уже после оплаты счета! Именно поэтому приложение было снесено и данные вы не получите уже никогда. И где-то я увидел, что проект продан Сберу? Одного этого факта хватило бы, чтобы его снести. А вы мне про алгоритмы. Простите, если я не в тему.

Ответить
2

Максим Нальский (крутой мужик) один из основатель IIKO - системы управления ресторанным бизнесом после достижения 15-20 тыс клиентов решил также создать отдельно систему лояльности (т.к. уже есть клиенты легко им еще и новое приложение показать)...показав быстрый рост и установив по моим расчетам в порядке 7-8 тыс ресторанов быстренько слил сбербанку совсем недавно и решил сфокусироваться на новом своём проекте Pyrus ( https://pyrus.com) . Максим уже не молодой пацан и видимо мечта всё таки покорить зарубежный рынок не дает покоя и решил не сюсюкаться по мелочам, т.к. это более серьезный проект и слил Plazius. Нужно признать, что контора с программистами у него не плохая, но он мужик старой закалки, а программисты молодые (он видимо тут VC вообще не читает, что пишут его сотрудники иначе бы дал по башке им). Уровень у Максима большой, но команда как я понял у них потекла и растрескалась, оттого в поле войн он один. Как говорится старый волк. Я сам с уважением отношусь к этой старой школе и знаю больше тех кто технологий продали и слили в Японию и США за копейки и уехали, а они остались и пилили своё. Кто то поднял ICL для японцев в Казани и продался IBM, а кто то пилил своё...и почему то только последние из старой школы вызывают сегодня уважение. Как то так, правду нам не скажут ))

Я вот честно читаю ответ на другой коммент и а*реневаю от уровня самого ответа. Мало кого интересует реальность - надо пилить бабло и говорить ресторанам, что там реально биг дата, машин лернинг и крутой анализ, когда приложение реально лагает.

Ответить
0

Дать на чай до сих пор нельзя. Или, опять же, фича скрыта так, что фиг найдешь. В моем случае я бы в кафе заходил раз в пять чаще, если бы эта фича была. По пути из спортзала у меня только часы на руке, наличных нет, а я привык благодарить за хорошую работу.

Ответить
0

Вы заново установили это проверить? Ребята на биг дату перешли, багами больше не занимаются...как я понял они продали в 2018 году недавно, а эти два года передавали проект сбербанку.

Ответить
0

Нет, я просто снес его не так давно - пару недель назад.

Ответить
0

ну и правильно ) Если не затруднит добавьтесь пожалуйста мне вконтакте. У меня вопрос был по одному стартапу - совет может дадите или бета тестором там попробуете это не конкурент Plazius ))

Ответить
0

Все эти алгоритмы - забивание микроскопом гвоздей. Еще ни одна система почему-то не выявила, что все заказывают обязательно чай или кофе. Кофе - кофеманы, дайте им скидку 50% на кофе - все равно в плюсе будете, кофеманы в вашем кафе поселятся. Если, конечно, кофе вкусный. А потом, расположение - кафе прямо у метро и в спальном районе - нужно кому-то рассказывать о том, насколько алгоритмы принятия решений разные должны быть?

Ответить
0

Все не так просто. Во-первых, если заведение кофейня, то там много видов кофе. И разные люди пьют разный кофе. Гораздо эффективнее предлагать каждому гостю акцию на его любимый кофе, чем на кофе вообще. Отклик при более персонализированной коммуникации выше в несколько раз. Именно в этом сила алгоритмов.
Но, конечно, можно давать скидку на кофе 50%, можно давать скидку на все 50%. Это не очень эффективный вариант, потому что там и отклик похуже, и средний чек сильно понижается.А если скидка постоянная - то это убивает общую ценность бренда. Много заведений закрылось после того, как стали играть на купонных сайтах.
Одна из наших метрик, к примеру, учитывает "заспамленность" гостей. Т.е. мы учитываем сколько гость получал скидок, какой их размер и сколько коммуникаций ему было. Один из аналитических "инсайтов" заключается в том, что при неконтролируемой раздаче скидок чувствительность аудитории к возврату сильно падает. И это было видно при A/A тестах.
Как результат получаем практически неуправляемый отток и снижение выручки. Люди просто привыкают к скидкам и по факту. Персональные скидки с обоснованным ограничением по времени гораздо эффективнее.

Ответить
0

Есть смысл разделять алгоритмы машинного обучения, на которых работает движок и приложение. Алгоритмы опираются на данные авторизованных заказов. Авторизация (или чекин) может быть осуществлена с помощью: карты лояльности, номера телефона, приложения, карты из wallet и др. методами.
Plazius - это гораздо больше, чем приложение.

Алгоритмы доказали свою эффективность. Мы очень тщательно проверяли все этапы: сегментацию, способы выделения важных свойств, построение шаблонных акций на базе этих свойств, коммуникацию.
У нас есть контрольная группа, которая учитывает органический возврат гостей и это большая редкость в нашей стране. Мы очень честно измеряем экстра возврат и полученную экстра прибыль. Даже это уже многое говорит о ценностях компании.

Ответить
0

Реальность включает в себя разных людей и не стоит ее описывать по одной истории. Большие данные - это то, что позволяет убрать какие-то отдельные случаи из обзора и сфокусироваться на глобальных тенденциях, которые серьезно влияют на прибыль. Как я уже упоминал, созданный алгоритм работает вне зависимости от приложения и вполне доступен для работы даже только с аудиторией гостей с картами лояльности.

Ответить
1

Вы лучше скажите зачем Plazius сбербанку продали...мне вот реально интересно сумма сделки, почему и т.д. Ваш основатель в прошлом несколько проектов уже продал и очень умный мужик, но вот Plazius никак ему простить не могу.

Ответить
0

Это вопрос не ко мне.

Ответить
1

"Чтобы точно определять гостей, которые нарушили свою обычную регулярность посещения заведения, алгоритм анализирует историю визитов каждого гостя по примерно 400 параметрам и предсказывает, какие гости не вернутся в течение ближайшего месяца."

"Plazius работает в ресторане не менее 6 месяцев. Обычно за этот срок накапливается достаточно данных для анализа предпочтений гостей.
Не менее 7500 гостей используют Plazius и дали согласие на отправку SMS рассылок. С меньшей базой гостей смарт-акции будут работать не так эффективно."

Ребята с большим уважением отношусь к Plazius, но вот попытка биг дата и машин лёрнин тут думаю не прокатит как доп фишка для ресторанов. Ну типа есть, но реально его не будет так таковой. У каждого ресторана свои блюда, свои категорий, на что то могут дать скидку, а на что то нет, где то что будет в наличие, а что то нет (хотя в вашем CRM и Plazius типа есть в наличие). Там вариативность и энтропия вообще зашкаливает и в результате скорее будет просто тупо что-то чем ничего. Лучше бы сказали, что пока собираете данные для анализа, чем говорить, что 400 параметров предсказывает. Ну извините никак 400 параметров отследить ваш софт не может (у него даже доступа нет к GPS, личным фоткам, переписке клиентов), чтобы сказать вернется он в течение ближайшего месяца. Думаю товарищ майор даже не имеет 100 параметров на граждан при всей власти, не говоря уже о приложение лояльности для ресторанов.

Ответить
0

400 параметров набрать из истории заказов элементарно. Главное понимать по какому принципу их искать. Простой пример: время заказа. По сути это: день, месяц, время дня (обед, вечер..), день недели и так далее. Поверьте, это даже не так много, как может показаться на первый взгляд, но достаточно для работы алгоритмов. Кстати, сами алгоритмы уже умеют работать с разными меню.

Ответить
0

По стене ползёт кирпич деревянный как стекло, ну и пусть себе плывёт - нам не нужен пенопласт. Теперь из собранных материалов определите сколько весит кг зеленых ёжиков в рублях. А если серьезно то вопрос задан авторам, т.к. не думаю, что вы компетентны в биг дата и машин лёрнинг, т.к. никто с практикой не ответил бы так как вы (потому что проблема не только в сборе данных). Очень хотел бы услышать хотя бы парочку реальных полных скриптов которые отвечает на вопрос что они указали в статье, так сказать вывод о ёжике.

Ответить
0

Айдар, я отвечаю за этот проект в Plazius. Скрипты - это просто инструменты. Приводить их в маркетинговой статье нецелесообразно. Здесь важно дать смысловое объяснение как они работают. Кому будет интересно можем показать их работу в офисе, но пересылать ни скрипты, ни данные не будем - это интеллектуальная собственность Plazius.
Отмечу, что там много чего лежит "под ковром". Например, нормализация названий меню из разных касс вида "капуч.", "кап.450", "капуч. ст." и т.д. к единому "капучино".

Ответить
0

я понимаю, что вы хотели бы разбираться в биг дата и машин лернинг, но было бы сначала научиться нажимать кнопку "ответить" - а то у вас на аккаунт два коммента и оба мимо (я вообще случайно зашёл и увидел, что вы ответили, но не мне) - это кнопка не срыта от глаз. Когда вы отвечаете - то я уведомление получаю и мы можем общаться (тут в VC так принято). Ваш кэп.

Дайте смысловое объяснение тогда как они у вас работают. Мне интересно очень "алгоритм анализирует историю визитов каждого гостя по примерно 400 параметрам и предсказывает, какие гости не вернутся в течение ближайшего месяца."

Ответить
–1

точно, через "ответ" удобнее) очень круто)
Смысловое объяснение уже дано в статье.

Ответить
0
{ "page_type": "article" }

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Голосовой помощник выкупил
компанию-создателя
Подписаться на push-уведомления
{ "page_type": "default" }