Сквозная аналитика в недвижимости не работает: в чем ошибка и где решение

Объяснимо, но факт: сквозная аналитика в сфере недвижимости не работает.

На рынке масса готовых решений, которые предлагают “сквозную аналитику”. Однако все эти системы не учитывают фактор “длинного цикла сделки”, и делать вывод на основе таких данных все равно, что есть суп дырявой ложкой, - вроде и суп варили, и ложку взяли, а только перепачкались. В чем проблема? Давайте разберемся.

Что мы хотим получить от сквозной аналитики? Понимать, насколько эффективны наши вложения в рекламу. Главный критерий в таком случае - ROMI (будем считать, что это, условно, то же самое, что и ROAS/ROI). Этот показатель считается просто - прибыль за некий период по отношению к расходам этого периода, умноженная на 100%. Обратите внимание, ROAS рассчитывается, как прибыль по отношению к расходам за определенный период. Казалось бы, все верно, что тут не так?

И вот здесь - вся загвоздка. Ведь, зачастую, проходит несколько месяцев от момента первого обращения потенциального клиента в компанию до получения первой оплаты. Стандартная методика расчета ROMI не работает для сферы недвижимости.

Почему обычная сквозная аналитика не работает в недвижимости​ Игорь Кузин
Почему обычная сквозная аналитика не работает в недвижимости​ Игорь Кузин

Давайте смоделируем ситуацию, когда мы запускаем рекламу по случаю старта продаж нового ЖК:

  • В первый месяц мы тратим на рекламу 5 млн. руб. Рентабельность отрицательная, так как большая часть людей, привлеченных рекламой, еще не успела принять решения о покупке.
  • Во второй месяц тратим еще 3 млн. руб. (да, нам урезали бюджет “по результатам” первого месяца), продажи лучше, но их пока немного. ROAS, рассчитанный стандартным способом, по-прежнему очень низкий, возможно, отрицательный.
  • В третий месяц мы тратим еще 1 млн. руб. (догадайтесь почему) и получаем уже достойный результат. Многие клиенты, пришедшие в первый и второй месяцы, заключили сделки. Рентабельность инвестиций подскакивает, и мы видим, что со стандартным ROAS вроде как все в порядке.
Моделируем ситуацию запуска рекламной кампании по случаю старта продаж нового ЖК​ Игорь Кузин
Моделируем ситуацию запуска рекламной кампании по случаю старта продаж нового ЖК​ Игорь Кузин

На вид - обычная ситуация, ничего удивительного. Только вот проблема в том, что это, не побоюсь этого слова, “кривая” аналитика, которая приводит к таким же “кривым” выводам. И вот, например, к каким:

  • На уровне высшего руководства: расходы на маркетинг не очень связаны с продажами (ведь по факту в примере, можно сказать, обратная корреляция); вероятно, и дальше можно урезать бюджет, это не скажется ощутимо на продажах. А на самом деле: если урезать бюджет в данном примере, то через несколько месяцев придет значительный и очень даже ощутимый спад продаж.
  • На уровне маркетолога: была произведена успешная оптимизация кампаний; наконец найдены те рекламные кампании, ключи, креативы, типы устройств, геолокации и прочие факторы, которые привели к нужном результату. А на самом деле: рекламные активности 3го месяца почти не повлияли на продажи этого 3го месяца; возможно, даже наоборот, эффект от них на 4,5,6 месяцы будет хуже, чем от 1го месяца.
  • На уровне подрядчика-агентства: рост ROI до 5000%, мегакейс и прочий успешный успех; это не фейк - это статистика, а ведь с ней не поспоришь; и все это благодаря внедрению “сквозной аналитики”! А на самом деле: подрядчик очень старался (нет, правда старался) и отключил те сегменты (например, ключевые фразы), которые не давали быстрого результата, что непременно негативно скажется на кампаниях, но только позже, в следующих периодах.
  • На уровне аналитика: нет иллюзий; понятно, что все не так радужно, но, во-первых, нет удобного инструмента, который бы позволил оценить реальную отдачу от рекламы, а, во-вторых, просто не хочется никого расстраивать, ведь все так счастливы ;)

Итак, стандартный подход к исчислению ROMI/ROAS/ROI не работает в недвижимости. Да и не только в недвижимости, в любом бизнесе с длинным циклом сделки. Так как же правильно считать эти и другие метрики, например, хотя бы объем продаж? Ниже простая схема, которая наглядно иллюстрирует описанный выше кейс.

Когортный анализ в сквозной аналитике​ Игорь Кузин
Когортный анализ в сквозной аналитике​ Игорь Кузин

Что это вообще такое? Конечно, это когорты! Группа людей, привлеченных в 1й месяц (когорта 1го периода), внесла наибольший вклад в продажи 3го. Когорта 2го месяца внесла несколько меньший вклад. Когорта 3го периода внесла минимальный вклад в продажи, собственно, 3го периода.

Интересно, что многие (и в том числе даже весьма продвинутые) маркетологи и аналитики полагают, что когорты - это не про сквозную аналитику. Это про “ретеншн” и вообще актуально только для приложений, СМИ, блогов и т.д. Мы в Smart Analytics любим когорты и расскажем вам о том, что это идеальный инструмент для оценки маркетинга в условиях длинного цикла сделки.

Как работать с когортами в случае длинного цикла сделки?

Итак, чтобы правильно посчитать отдачу от вложений в маркетинг, необходимо взять конкретную группу людей, которых мы привлекли в конкретном периоде за конкретные деньги, и посмотреть, что с ними случилось не только внутри этого периода, но и в течение последующих. В качестве такого периода, кстати, может быть вовсе не месяц - а, например, период, соответствующий времени проведения некой акции или действия какого-либо специального предложения. Эта группа людей - “когорта”. “Когортный анализ” решает проблему длинного цикла сделки. Он убирает все лишнее и показывает реальную картину.

Когортный анализ известен давным давно, так почему же его использую не все? Дело в том, что он требует нестандартной логики работы системы аналитики. На момент написания статьи, мне неизвестны системы сквозной аналитики (за исключением smartanalytics.io), позволяющие работать с когортами. По факту, сейчас строить когорты - это долго и дорого. Строятся они мучительно, руками высококвалифицированных специалистов, закупивших решения по стримингу данных, вызывая массу вопросов к корректности и гибкости механики подсчета. На рынке просто долгое время не было представлено решений, которые могут “когортно” вычислить абсолютно любые метрики эффективности бизнеса по абсолютно любым срезам за несколько кликов.

Причем когорты можно строить не только в безумных таблицах, но и использовать наглядную визуализацию самых разных типов. Выглядит это, например, вот так:

Пример работы с когортами​ Игорь Кузин
Пример работы с когортами​ Игорь Кузин

Что видно на этом скриншоте? Зеленые столбики - это объем продаж людям, пришедшим в марте. Синие столбики - результат рекламы апреля. Ну а розовые - мая. Благодаря такой визуализации, например, мы получаем реальную картину структуры майских продаж и понимание реального объема продаж, обусловленного мартовской рекламой.

Но в когортном анализе есть одна проблема - он не так прост для восприятия. Я бы даже сказал, что он немного мозгодробителен. Если в такой таблице будет больше данных (больше периодов, несколько показателей - да, такое тоже возможно) - читать ее станет довольно трудно.

А можно как-то попроще?!

Да, можно! В системе существует “когортный режим”, позволяющий получить простую и понятную таблицу с нужными срезами и правильными данными. Ведь инструмент для бизнеса должен быть простым, понятным. Он должен скрывать все сложное, давать ответ, а не создавать головную боль. Когортный режим - инструмент не только для аналитиков, но и для маркетологов, управленцев.

Теперь можно пользоваться привычными глазу таблицами и диаграммами, работая с данными, отражающими реальную картину. Добавьте расход, сеансы, конверсии, цены лида, брони, объем продаж и любые другие показатели - сколько угодно одновременно. Нажмите на одну кнопку, и платформа сделает все остальное сама. Результат такого расчета на одном из реальных проектов выглядит так:

Пример работы с метриками, вычисленными "когортно" в некогортном отчете​ Игорь Кузин
Пример работы с метриками, вычисленными "когортно" в некогортном отчете​ Игорь Кузин

Это простая таблица, где можно посмотреть что угодно. Вся это возможно благодаря person-based аналитике, в рамках которой платформа работает не сессиями, а с пользователями, то есть с теми самыми людьми, которые покупают квартиры, дома и парковочные места. Таким образом, можно проследить все точки взаимодействия с клиентом, и неважно как сильно они растянуты по времени.

Кто-то скажет: “Игорь, о чем ты! Когортный анализ есть даже в бесплатном GA, и много где еще!” Я уже давно мечтаю увидеть хотя бы один реально работающий проект, где когорты считают метрики сквозной аналитики, опираясь в том числе на рекламную статистику и данные из CRM.

Учет длинного цикла сделки и “скрытые” возможности когортного анализа - глубокая и очень интересная тема. Больше информации о работе с когортами и сквозной аналитике в нашем telegram-канале, присоединяйтесь.

2929
76 комментариев

Как ваш телеграм канал найти? И можно ли посмотреть на эти когорты в действии?

6

Да, конечно. Телеграм-канал: https://t.me/smartanalytics

5

Демо-доступ можно получить после регистрации в системе: https://cloud.smartanalytics.io/#!/register

5

Довольно странный взгляд. Все коробочные сервисы на рынке привязывают сессии, лиды с них и все этапы сделки к дате привлечения сессии. То есть, к реальной дате траты бюджета на закупку трафика, который дальше идёт по воронке. И вы, зная, что у вас длинный цикл сделки, просто оцениваете эффективность маркетинга за прошлые месяцы. А текущие активности аккуратно анализируют по промежуточным показателям. Описанной вами проблемы просто не существует) 

4

Ксения, спасибо за вопрос! Действительно, с некоторыми проблемами так - пока с ними вплотную не столкнешься, не думаешь о том, что они есть)

Вы описали подход, который основан на том, что а) мы связали расходы с сессией (корректно ли это было или нет - это уже другой вопрос); б) связали сделку с сессией; в) по сути, атрибуцировали сделку на некую сессию (скорее всего, по последнему непрямому взаимодействию). Допустим, все это получилось сделать более или менее корректно. 

Но при таком подходе возникают следующие проблемы: 

1) Данные в отчетах "сквозной аналитики" не сходятся с фактическими от слова "совсем". В таком отчете за июнь, например, практически не будут показаны майские продажи, но будут данные за другие периоды. 

2) Руководителю на стол, в таком случае, будут ложиться отчеты, данные в которых будут безудержно меняться. В конце мая - за май одна статистика, в июне за тот же май уже другие данные, в августе - еще какие-то. И главное, не понятно что откуда берется. 

3) Домножим п.2 на то, что в реальности все не так просто, как в моделях, аналитическая инфраструктура не идеальна и не все работает так, как задумано. Тогда подход, основанный на атрибуцировании сделок, вызывает большое недоверие, т.к. сопоставить данные с реальными, фактическими, не представляется возможным. 

4) После сессии (той самой, с которой мы "склеили" сделку), возникают дополнительные расходы на пользователя (ретаргетинг/ремаркетинг, рассылка, CRM-маркетинг, работа отдела продаж). В описанной Вами схеме эти расходы не будут учтены и ROMI будет некорректным. 

5) Крайне сложно понять, что происходит с растянутыми во времени платежами. Например, рассрочкой, или допродажами (случаи, когда покупатель приобретает машиноместа или несколько объектов последовательно).

Всех этих проблем и упущений нет, когда мы используем когорты для анализа маркетинга, для которого характерен длительный цикл сделки.

4

Ксюша подняла интересный вопрос. Могу сказать с позиции личного опыта (я являюсь Управляющим партнером в московском performance-агентстве): мы с 2014 года перебрали большое кол-во различных систем сквозной аналитики, в числе которых был и платный GA, и тот же Roistat, и иже с ними - сейчас могу  уверено заявить, что от когортного анализа в готовых системах, в которых довелось поработать, одно название.. Да, ряд систем, действительно, позволяют когортить какое-то ограниченное кол-во параметров, при том, все эти параметры – только про данные из CRM. Допускаю, что мог упустить из виду что-то интересное) Ксения, могли бы вы привести конкретный пример, из вашего опыта, получения когортных данных в готовых системах сквозной аналитики? 

На сегодняшний день, могу сказать, что не получите вы когортного отчета без предобработки данных, sql-запросов, датасетов и т.п. – это тоже вариант, конечно, но довольно хардкорный - придется "вспотеть", чтобы получить нужные когорты. Да и времени на это уйдет, "мама не горюй". Так что, тема, задетая автором в статье, вполне уместная и актуальная, как по мне. Только я бы несколько расширил фокус – проблема касается не только недвижки, есть ещё много отраслей с длинными циклами сделок и повторными продажами - и там возникают те же вопросы

2

 Рад что хоть кто-то это написал...

P.S.:
 У сервисов сквозной аналитики основные жирные клиенты это как раз недвижимость и автоцентры. Что первые что вторые это длинные цикл сделки.

4