{"id":6525,"title":"\u041a\u0430\u043a \u0441\u0435\u0431\u044f \u0447\u0443\u0432\u0441\u0442\u0432\u0443\u0435\u0442 \u0438\u043d\u0432\u0435\u0441\u0442\u0438\u0446\u0438\u043e\u043d\u043d\u044b\u0439 \u043f\u043e\u0440\u0442\u0444\u0435\u043b\u044c \u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u0435\u043b\u0435\u0439 vc.ru","url":"\/redirect?component=advertising&id=6525&url=https:\/\/vc.ru\/promo\/292716-yandeks-vyhodit-iz-spyachki-alibaba-portit-nastroenie&placeBit=1&hash=7519bee6efc23ae5d635bf3098f678add4979d572b9f05b21135900c9688d27b","isPaidAndBannersEnabled":false}
Machine learning
Celado AI

Рекомендательные системы: как это работает

Чем отличаются опытные специалисты от новичков? Почему опытный менеджер по продажам быстрее находит подход к клиенту, а инженер проверяет именно те узлы, которые могли бы сломаться при запуске производственной линии? Дело в опыте. Опыт - установившиеся паттерны в нашем мозгу, созданные на основе многочисленных похожих ситуаций в прошлом. Мы даже не всегда осознаём, что нас сподвигло на такое решение: интуиция, “чуйка”, профессионализм. На самом деле это устоявшиеся связи между нейронами.

Я без труда смогу посоветовать своему другу, какой новый сериал ему посмотреть, и который наверняка ему понравится. Я знаю его интересы, его мнение о других фильмах, книги, которые ему нравятся, поэтому я, скорее всего, угадаю, что его заинтересует, а что нет.

Ту же задачу решает Netflix. У него нет много информации про меня (какие книги я читаю, информацию о всех фильмах, что я смотрел), но есть немного информации про миллионы других людей. В результате алгоритм находит похожих по своим предпочтениям на меня и советует мне фильмы, которые я ещё не видел, а другим, похожим на меня пользователям, они понравились. Аналогично Amazon предлагает мне товары, которые другие люди, покупали вместе с теми, что купил я или похожи на меня по тем товарам, которые я покупаю.

Метод рекомендации, основанный на знаниях, какие товары нравятся другим, похожим на меня пользователям, называется коллаборативной фильтрацией.

Понравится видеоплеер человеку E?

Когда пользователей десятки тысяч, а товаров сотни, то выявить верные оценки непросто, в таблице будет много противоречивых и отсутствующих данных.

Тут на помощь аналитикам и приходит машинное обучение, которое решает те задачи, которые не может решить простой алгоритм.

Другой тип рекомендательной системы основан на типе товаров, которые приобрёл пользователь. Например, если речь о фильмах, то система будет сравнивать жанр, длительность, актёров и режиссёра, другие параметры, характерные для фильмов, которые мне нравятся. И на основе этих признаков будут подбираться другие работы, которые я ещё не видел.

Для других классов товаров будут другие параметры. Какие именно, и что именно влияет на предпочтения, должны будут установить специалисты по данным. Для этого есть специальные инструменты и методы.

Разновидностью второго типа предиктивных систем являются системы, построенные на сравнение пользователя не по его товарным предпочтения, а по социально-демографическим признакам и другим параметрам непосредственно покупателя. Мне будут предлагать товары, которые покупали другие мужчины 30-35 лет, живущие в Москве и, например, занимающиеся спортом.

По нашему опыту наиболее эффективно работают гибридные рекомендательные системы, объединяющие как историю покупок (или предпочтений конкретных пользователей) с их социально-демографическими признаками.

Частным случаем рекомендательных систем являются системы для прогноза оттока и персонализации маркетинга, о которых мы говорили в другой статье.

Также есть некоторые особенности для b2b рекомендательных систем. Их мы частично касались в статье об аналитической системе для отдела продаж, но более подробно рассмотрим в отдельном материале.

{ "author_name": "Celado AI", "author_type": "self", "tags": ["\u0440\u0435\u043a\u043e\u043c\u0435\u043d\u0434\u0430\u0442\u0435\u043b\u044c\u043d\u0430\u044f_\u0441\u0438\u0441\u0442\u0435\u043c\u0430","\u0440\u0435\u043a\u043e\u043c\u0435\u043d\u0434\u0430\u0442\u0435\u043b\u044c\u043d\u0430\u044f\u0441\u0438\u0441\u0442\u0435\u043c\u0430","\u043c\u0430\u0448\u0438\u043d\u043d\u043e\u0435\u043e\u0431\u0443\u0447\u0435\u043d\u0438\u0435","\u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0439\u0438\u043d\u0442\u0435\u043b\u043b\u0435\u043a\u0442","\u0438\u0438","\u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0437\u0430\u0446\u0438\u044f\u0431\u0438\u0437\u043d\u0435\u0441\u0430","artificalintelligence","ai"], "comments": 0, "likes": 3, "favorites": 7, "is_advertisement": false, "subsite_label": "ml", "id": 152832, "is_wide": true, "is_ugc": true, "date": "Tue, 25 Aug 2020 14:50:32 +0300", "is_special": false }
0
0 комментариев
Популярные
По порядку
Читать все 0 комментариев
Revolut запустит в США торговлю акциями без комиссии в приложении Статьи редакции

Это позволит сервису конкурировать с Robinhood и Square, отмечает CNBC.

ПРЕМЬЕРА ВТОРОГО СЕЗОНА СЕРИАЛА «МОЛОДЫЕ И СИЛЬНЫЕ. ПРОКЛЯТИЕ ВЫЖИВШИХ»
Amazon впервые с 2018 года обновит Kindle: в новой версии — увеличенный экран и режим автономной работы до 10 недель Статьи редакции

Стоит от $140.

Kindle Paperwhite Amazon
Как IT-компания делает продукты: история собственной торговой марки Яндекс.Лавки
Пивозавро-стикеры для IT
Производитель микрокомпьютеров Raspberry Pi привлёк $45 млн при оценке в $500 млн Статьи редакции

Компания потратит инвестици на расширение линейки микропроцессоров Pi и маркетинг.

Evrone News #08: выступили на конференциях и провели первый Evrone Fest

В этот раз наша традиционная подборка посвящена мероприятиям. Во-первых, наши спикеры отлично выступили на PyCon и RnDTechConf, а во-вторых, мы провели свой первый Evrone Fest. Подробности ниже.

«Сбер» продаст свою долю в разработчике системы для распознавания лиц VisionLabs — Reuters Статьи редакции

Банк хочет развивать другой сервис распознавания лиц и речи, сообщают источники издания.

«ВкусВилл» объявил о ребрендинге и первой за девять лет смене логотипа Статьи редакции

У компании новый слоган — «Здесь полезное вкусно».

«Вкусвилл»
Слабое звено бизнеса — уверенность. Разбираемся, как ее достичь

Начнем с очевидного: бизнес — это всегда практикум. Научить ему на лекциях и курсах сложно. Это понимают и опытные, и новички, и даже наемные работники. Тогда откуда такой спрос на обучающие программы со стороны бизнеса? Мы углубились в вопрос и нашли ответы. Выводы оказались неожиданными: образовательные программы, интерактивы, презентации…

null