На протяжении последних десятилетий объем перевозок, который приходится на ж/д транспорт, стабильно падает во всем мире, уступая дорогу автотранспорту. Последний, как правило, превосходит ж/д по скорости, удобству и дешевизне. Однако списывать поезда со счетов было бы ошибкой. У этого вида транспорта есть свои преимущества, не последние из которых — безопасность и экологичность (разумеется, в сравнение с другими видами транспорта).
А решаете как-то распределение парка по маршрутам и отправкам в зависимости от сроков ремонта и близости к вагоноремонтным точкам ?
Да, план график ремонтов в привязке к вагоноремонтным депо мы учитываем как входную информацию и распределяем парк по маршрутам с учетом того, что следующим пунктом назначения может быть ремонт
Круто, настоящий математический хайтек. На ваш взгляд насколько далеки от идеальных результатов существующие модели и методы расчетов?
У каждого ЖД оператора исторически складывается свой уровень эффективности и он в большей или меньшей степени приближен к оптимальному. Все зависит от ритмичности и устойчивости перевозок. Чем больше уровень неопределенности и изменчивости в маршрутах, тем больше резерв для оптимизации.
В нескольких крупных компаниях есть решения на эту тему. Основная сложность — прогнозирование наличия груза в точках грузоотправки. Получается так что для рыночных операторов работающих с большим количеством клиентов невозможно спрогнозировать наличие грузов, а для кэптивных или работающих с твердыми контрактами это не нужно, поскольку им важно подать клиенту вагон. Поэтому они обходятся простыми треугольниками и звёздами, которые они планируют заранее.
Согласен, что для рыночных операторов задача прогнозирования груза в точках грузоотправки крайне важна, сложна, но и реализуема. У нас есть опыт создание системы прогнозирования грузопотоков для последующего оптимального распределения собственного парка. Для кэптивных компаний эта задача менее актуальна, но тем не менее и им оптимизационные модели помогают снизить простои и холостые пробеги.
Точность всего результата в основном и очень очень сильно зависит от качества прогноза сроков доставки грузов, какой точности прогнозирования сроков доставки реально удалось достичь на практике?