Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Порой даже самая простая идея может вызвать радикальные изменения во всех сферах жизни человека, перевернуть наше представление о технике, процессах и устройстве в экономике и обществе. Мы в red_mad_robot решили разобраться в самых заметных вехах истории человечества и понять, как опыт прошлых эпох помогает формировать будущее.

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Сегодня словосочетание «композитный материал» вызывает ассоциации с самыми прорывными технологиями и решениями, на которых уже строится будущее. Это не совсем верно: ведь самой идее композита уже несколько тысяч лет. Но, несмотря на весь прогресс, основной принцип создания композитов сохраняет свою актуальность и по сей день, оставаясь, как и на заре цивилизации, основой нашего видения будущего. Но обо всём по порядку.

Композит — материал, изготовленный из двух или более компонентов с различными физическими или химическими свойствами. Говоря проще, это смесь. Смесь, итоговые свойства которой превышают показатели каждого из ее элементов, взятого по отдельности. Например, если сорвать с дерева лист и покрыть его смолой, получится композит: ни лист, ни смола сами по себе не будут так же держать форму или противостоять внешнему воздействию, как их сочетание. Этот простой принцип и лег в основу материалов. И да, человек додумался до этого довольно давно.

От фанеры до композитного лука

К числу первопроходцев по части получения и применения композитных материалов относят жителей Месопотамии — они населяли регион 3,5 тыс. лет до нашей эры. Именно там зародилась история композита и материала, до сих пор используемого людьми, — фанеры. Было достаточно сложить несколько листов дерева друг на друга под разным углом, закрепить их примитивным клеем, и материал, доказавший свою эффективность на долгие сотни лет вперед, готов.

Сочетание клея и листов дерева образовало новый, куда более прочный и износостойкий материал, дошедший до наших дней. Это базовый принцип композита: объединение свойств уже существующих материалов в материале новом. С того момента, как человек освоил этот принцип, технический прогресс начал ускоряться — композиты стали спутниками целых цивилизаций.

Папирус — удобный и долговечный

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Чтобы понять инновационность папируса, достаточно сравнить его с теми же месопотамскими глиняными табличками: громоздкие и неудобные, эти почти что «камни» по всем статьям проигрывали изящному изобретению египтян. Папирус было удобнее хранить, и, по сравнению с «царапанием» по глине, на нем гораздо проще писать и рисовать.

Видео о том, как делают папирус.

Бетон — практичный и прочный

Бетон впервые был описан римским архитектором Витрувием еще 2 тыс. лет назад. Ученый делал ставку на сочетание вулканического пепла и известняка, чтобы придать своим постройкам надежность и прочность. Использование нового материала позволило в значительной степени улучшить физико-механические и деформативные характеристики сооружений. Бетон применялся практически везде, будь то храмы, многоэтажные дома, стадионы, гавани, мосты, акведуки или дороги.

Римский бетон. <a href="https://api.vc.ru/v2.8/redirect?to=http%3A%2F%2Funews.utah.edu%2Froman-concrete%25E2%2580%258B&postId=261744" rel="nofollow noreferrer noopener" target="_blank">unews</a>
Римский бетон. unews

Где-то он даже вытеснил кирпич, хотя говорить о его полном доминировании сложно. Тем не менее даже Римский Колизей — одна из вершин античного зодчества — сохранился до наших дней благодаря тому, что в его строительстве применялся бетон.

Римский Колизей
Римский Колизей

Секрет прочности римских конструкций во многом продиктован именно использованием бетона: этот пластичный материал не «сдавался» даже через несколько десятков лет воздействия воды. Даже наоборот — становился прочнее.

Ученые попытались объяснить этот феномен только в XXI веке, выдвинув гипотезу, что секрет прочности древнеримских акведуков и прочих построек из бетона обоснован «химией» двух его компонентов: вулканического пепла и морской воды. Как считают некоторые исследователи, по ряду показателей римский бетон даже превосходит современные строительные материалы. С падением Рима бетон как строительный материал был утерян до XVIII века, после чего прочно занял место в нашей реальности.

Композитный лук — эффективный и опасный

Еще одно яркое доказательство того, на что способно объединение свойств нескольких материалов, подарили миру Средние века и монгольское нашествие. Современники завоевателей и исследователи отмечали особую роль луков в военном могуществе кочевников, державших в страхе государства Европы и Азии в период XIII-XV веков.

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

И это неудивительно — ведь луки, которые использовали завоеватели, были композитными. Такой лук состоял из дерева, костей и клея животного происхождения. Это легкое и простое для использования конниками оружие обладало рядом преимуществ даже по сравнению со знаменитыми английскими длинными луками: в отличие от последнего, монгольский композитный лук придавал стреле ускорение на протяжении всего «выстрела».

Сама конструкция композитного лука и его гибкость придавали дополнительное ускорение стреле, что упрощало работу лучника и сказывалось на точности стрельбы. Оружие обеспечило преимущество на поле боя и заложило основу могущества Монгольской империи, распростершейся от берегов черноморья до Тихого океана.

Победа железобетона и пластмасс

В относительной древности композиты только зарождались. Подлинный расцвет их использования пришелся на XIX-XX вв, когда плоды научно-технического прогресса изменили понимание человека о природе вещей.

В начале XIX века в строительстве вновь начал применяться бетон. Он вернулся в цивилизацию благодаря тому, что в 1796 году англичанин Д. Паркер запатентовал технологию получения романцемента — вяжущего материала, способного к затвердеванию и на открытом воздухе, и в воде. Смешанный с гравием, песком и водой цемент образовывал бетон. Бетон, отличавшийся своей пластичностью, завоевал новую популярность — впервые со времен Древнего Рима. Прочный и водостойкий материал плохо выдерживал нагрузку на растяжение, потому в качестве основного материала для несущих конструкций применялось железо в виде кованых стержней и полос. Но оно, в свою очередь, было подвержено коррозии, из-за чего перед человечеством стояла задача: найти более универсальный материал, способный сочетать свойства как бетона, так железа.

Так придумали объединить два материала: арматура легко обволакивалась бетоном, тем самым оказываясь включенной в его массу. Сила сцепления железа с бетоном была огромной: материалы начинали работать как одно целое. Так появился железобетон — композит, ставший новой вехой в истории строительства. «Спрятанное» в бетон железо не ржавело и сохраняло свою прочность, а сам железобетон показал высокую огнестойкость.

Материал показал себя как долговечный, устойчивый к воздействию температур и удобный в использовании — с железобетоном конструкции можно придать практически любую форму. Это обеспечило ему высокую популярность уже в следующем, XX веке. К примеру, в 1904 году в Российской империи (близ г. Николаев) был построен первый в мире железобетонный маяк, а примерно в то же время в Москве было осуществлены безбалочные междуэтажные перекрытия склада молочных продуктов.

Железобетон обладает значительной упругостью и хорошо сопротивляется динамическим нагрузкам, благодаря чему он снискал огромную популярность, позволив достигать новых вершин строительства. Материал позволяет возводить сооружения в кратчайшие сроки, экономя время застройщиков и обеспечивая темпы роста небоскребов и целых городов. Новые высоты железобетону покоряются и в буквальном смысле: Burj Khalifa, самое высокое здание мира, построено именно из железобетона.

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Материал уже давно приобрел огромное культурное воздействие: удобство и открываемые возможности для архитекторов стали основой для становления таких направлений, как модернизм и функционализм. Железобетон известен даже на уровне далекого от строительства обывателя: ни один арт с развалинами городов в мире постапокалипсиса невозможен без вида торчащей арматуры. Это именно он — железобетон.

Еще одна «победа» начала XX века — пластмассы, в частности, бакелит. Его получил в 1907 году американец Лео Бакеланд. Материал вышел теплоустойчивым, не проводящим электрический ток и необыкновенно прочным для своего времени. Неудивительно, что он рекламировался как «материал тысячи применений». Но каких?

Бакелит стал важнейшим проводником новых технологий в жизнь: патроны для ламп накаливания, работающих на только набиравшем тогда силу электричестве, производили именно из него. И это не говоря об украшениях, предметах интерьера, пряжках для ремней и т.д. Материал вошел в жизни целых поколений и быстро обрел популярность по всему миру. Если вы в детстве держали в руках советский телефонный аппарат, мыльницу или поднос из неприятного и «грубого» пластика — это был как раз бакелит.

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Успех подобных материалов чуть позже закрепили винил, полистирол, фенол и полиэстр, также нашедшие свою нишу: именно они позволили еще более массово и относительно просто производить бытовые предметы, тратя минимум времени и сил рабочих. Благодаря этому пластик буквально захватил мир: за последние 65 лет его ежегодное производство выросло в почти 200 раз, до 381 млн. тонн. Но не стоит сбрасывать со счетов и тот факт, что одним из главных стимулов, приведших пластик и композиты в целом на нынешние позиции стали глобальные конфликты, сотрясавшие мир в XX веке.

Военное «ускорение»

Особое применение нашел бакелит и в Первой мировой войне. Легкий в обработке — нагретый бакелит можно было «отформовать» в соответствующих матрицах, одной операцией получив готовую деталь — материал был именно тем, что требовалось для обеспечения работы огромных армий. Бакелит использовали в производстве телеграфов, телефонов, радиоприемников, уже упомянутых патронов для ламп накаливания, пробок для бутылок кофейников и т.д. Простой и прочный материал быстро показал себя и в военной технике: например, в производстве пропеллеров и в двигателестроении, не говоря уже о частных случаях вроде отделки интерьеров.

Вторая мировая также дала свои «плоды»: композиты активно применялись в авиации: индустрия отчаянно нуждалась в новых материалах, и именно композиты позволили дать ответ на насущные вопросы инженеров.

Одной из основных разработок здесь была дельта-древесина. Инженеры пропитали слои шпона фенол- или крезолформальдегидной смолой, спрессовали их и получили уникальный материал, который легче и прочнее многих сплавов на основе алюминия. Новый материал также был огнестойким и не покрывался плесенью. Дельта-древесина использовалась, например, в самолетах ЛаГГ-3, эксплуатация которых началась в 1941 году.

Сумма технологии. Как композитные материалы остаются «на хайпе» более 5 тысяч лет

Еще один пример «композитных» инноваций — применение листовой фибры топливных баков самолетов Ил-2. Изначально в конструкции использовались металлические баки, при попадании в которые образовывались большие пробоины, не позволяющие затянуться резиновому протектору, обтягивающему бак. Конструкторы применили листовую фибру — спрессованный картон, в составе которого есть целлюлоза и древесная масса. Да, древний принцип простого соединения разных материалов отлично работал и в те годы. В результате применения листовой фибры удалось не только решить проблему, но и на более чем 50 кг снизить массу самолетов.

Также во время войны стало известно о радиопроницаемости композитов из стекловолокна. Эта, казалось бы, мелочь, смогла избавить пилота от риска остаться без связи: «обтекатели» из стекловолокна защищали радиомодули от внешних факторов, не мешая коммуникациям. Сегодня стекловолокно находит применение в строительстве, электротехнической промышленности, автомобилестроении, судостроении, инструментальной промышленности и других отраслях.

В 60-х был изобретен углепластик: материал, состоящий из тонких нитей диаметром от 5 до 10 мкм. Он характеризовал себя как прочный, легкий, эффективно «справляющийся» с температурами и химической инертностью.

Материал также нашел применение в различных отраслях: от очков Ray Ban до вертолетов Adventourer и автомобилей McLaren. Да и пресловутая «рама карбон» в велосипедах — тоже оно. Сегодня промышленность научилась штамповать из углепластика самые разные детали, что позволяет эффективно и быстро производить их в самых серьезных масштабах. Углепластик сегодня — неотъемлемый компонент зданий, мостов и некоторых железнодорожных вагонов. Композиты быстро находят свою нишу, но их судьба в XXI веке будет разительно отличаться от того, к чему мы привыкли.

McLaren
McLaren

Композит сегодня и завтра

Сегодня композитные материалы являются полноценной индустрией, на которой основаны самые критические производства и сферы жизни. Список сфер, где применяются композиты, обширен: это не только авиация и космос, но и архитектура, автомобильная отрасль, энергетика, инфраструктура, судостроение, спортивная и рекреационная индустрии. Общий объем рынка композитов оценивался в $74 млрд в 2020 году, и, по, прогнозам, достигнет отметки в $112 млрд уже в 2025 году.

На композитах держатся целые отрасли. Например, в авиации применение этих материалов быстро вошло в стандарт. Для сравнения: в 70-х доля композитов в Boeing 747-100 стремилась к нулю, а в 2010-м году Boeing 787 уже на 50% состоял из композитов. Уже традиционный интерес авиастроителей к композитам неудивителен: к примеру, одно только композитное крыло для российского лайнера МС-21 позволяет значительно улучшить аэродинамику, а также уменьшить расходы при эксплуатации на 12-15%. А повышение энергоэффективности одного борта — это и снижение расходов самих перевозчиков: композиты напрямую связаны с экономической выгодой. Импортозамещающие материалы для композитного крыла МС-21, кстати, были разработаны на химфаке МГУ.

Да, композиционные материалы составляют порядка 50% от массы планера в современных пассажирских самолетах. Но это не предел: в некоторых истребителях и военных вертолетах доля композиционных материалов может достигать 90% от веса планера. Когда мы говорим о композитах для авиации, то в первую очередь подразумеваются материалы на основе непрерывных углеродных и стеклянных волокон. Композиты на основе углеродного волокна и полимерной матрицы принято называть углепластиками, а композиты на основе стекловолокна — стеклопластиками. Углепластики имеют удельную прочность (прочность, деленную на плотность) примерно в два раза выше, и удельный модуль упругости, определяющий жесткость конструкции, примерно в три раза выше аналогичных характеристик стеклопластика.

Поэтому более 70% от композитов, используемых в современной авиации, составляют углепластики, из которых производят силовые конструкции: хвостовое оперение, элементы конструкции фюзеляжа, лопатки двигателей. В меньшей мере в авиации используются стеклопластики, которые в основном применяются для изготовления радиопрозрачных обтекателей и интерьеров самолетов. Но есть у углепластиков и недостаток — это высокая стоимость.

Алексей Кепман, кандидат химических наук, заведующий лаборатории химии и технологии композиционных материалов МГУ

Алексей также добавил, что композиты «медленно, но верно» занимают те ниши, где раньше использовались металлы и их сплавы. По словам эксперта, мировой рынок композитов составляет порядка 11,5 млн. тонн в год, что в пять раз меньше, чем рынок алюминия, и в 30 раз меньше, чем рынок пластика. Рынку стали композиты уступают в более чем 150 раз.

При этом Кепман отмечает, что композитам есть куда расти: в период 2010-2020 годов наибольшее проникновение композитов наблюдалась в ветроэнергетике (15%-ный рост) и судостроении (7%-ный рост). Кроме того, по словам кандидата химических наук, большинство аналитиков склоняются к мнению, что в период 2020-2030 годов основной рост будет обеспечивать автомобильная промышленность: уже сейчас доля углепластиков в серийно выпускаемых BMW i серии составляет порядка 7% от веса автомобиля, а в электромобилях Tesla — 2-3%.

МС-21 Источник: Ростех
МС-21 Источник: Ростех

Если говорить в целом, то композиты сегодня применяются в строительстве, производстве бытовых товаров и потребительской электроники, объектах инфраструктуры, производственном оборудовании. Из них делают даже марсоходы. Кажется, что композиты уже прочно вошли во все сферы жизни и удивляться больше нечему. Но почему их по-прежнему называют материалом, который проторит путь человека в будущее?

Композиты преодолели огромный путь, начало которого уходит в самые дебри истории. Простая идея объединения свойств двух материалов с целью получить нечто новое эволюционировала вместе с человеком. Сначала это были папирус и бетон, ставшие синонимами грамотности и долговечности. Затем — бакелит и железобетон, открывшие человеку мир пластмасс и путь к строительству инженерных конструкций, которым можно придать практически любую форму. Полученные методом проб и ошибок, эти материалы выдержали тест истории, сформировав целые новые индустрии.

Но развитие цивилизации продолжается. Простая идея отбора лучших свойств для получения универсального материала работает и сегодня, но на новом технологическом уровне. Человек отказался от метода проб и ошибок в производстве композитов — сегодня материалы создаются целенаправленно: с учетом конкретных условий их будущего использования и с помощью самых современных технологических решений. Разработка новых композитов сегодня — это отдельная подотрасль: компании вроде Hexcel, Exel composites или HRC напрямую специализируются на разработке новых материалов.

Процесс производства композитов уже сегодня мало напоминает сочетание клея и листов дерева. А вот имена изобретателей композитов скоро начнут пропадать так же, как исчезла память о тех, кто впервые попробовал получить бетон. Дело в том, что разработку новых материалов уже сейчас начинают поручать искусственному интеллекту. Этим, к примеру, занимаются специалисты в США, которые с помощью алгоритмов уже разработали три новых композита. Применение ИИ уже сейчас позволяет ускорить процесс разработки материалов иногда в десятки и сотни раз, а в будущем это позволит поставить разработки буквально «на поток», отталкиваясь от каждой конкретной задачи.

Как получается выигрыш? Дело вот в чём. Современная индустрия предоставляет нам тысячи различных материалов, про каждый из них можно придумать десятки вариантов их обработки, и помимо этого, некоторые материалы сущестенно меняют свои свойства даже сами по себе, например при мелкодисперсном измельчении. При комбинировании этих вариантов между собой мы попадаем с ситуацию так называемого «комбинаторного взрыва», когда число потенциально возможных сочетаний даже нескольких компонентов недостижимо велико для экспериментальной проверки.

Тут то и приходят на помощь ИИ-алгоритмы. Загрузив в них несколько сотен реальных композитных материалов, их способов изготовления и характеристик, мы получаем предиктивную модель, которая для запроса на новый композит может из невероятного числа возможных посоветовать небольшое количество вариантов, наиболее вероятных по нужным свойствам. Их-то нужно будет потом проверить экспериментально.

Юрий Чайников,

руководитель RDL by red_mad_robot

Подкрепить достижения алгоритмов могут и цифровые двойники: уже сейчас они помогают проводить тесты деталей двигателя в виртуальной среде, полностью имитирующей реальные условия. То же самое применимо и к материалам. Более того, процесс их разработки все больше становится похож на разработку современных цифровых продуктов: для реализации проекта с заданными свойствами нужны гипотезы, эксперименты и идеи — как и при создании цифрового решения.

Не стоит забывать и о дальнейших перспективах нанокомпозитов, позволяющих выращивать искусственные костные имплантаты, изготавливать эффективные батареи, электронику и упаковочные материалы. Получит своё развитие и графен — перспективному материалу будущего уже сейчас прочат статус «лучшего друга» композитов, который сделает их еще эффективнее и дешевле.

XXI век станет эпохой глобального переосмысления композитных материалов, но принцип, сформированный людьми тысячи лет назад, сохраняется. Будущие достижения ученых неминуемо дополнят список материалов, найдя новые сферы применения, перевернув индустрии и, возможно, изменив ход истории. Истории, начавшейся с простой идеи: лучшее — не враг хорошего, а через объединение можно достичь практически всего.

Благодарим Кафедру химической технологии и новых материалов Химического факультета МГУ за помощь и научную поддержку.

1313
Начать дискуссию