2035 University

Дата-инжиниринг для всех. Как научиться анализировать образовательные данные

Образовательный дата-инжиниринг – новое направление, но масштабное внедрение онлайн-обучения сделало его жизненно необходимым для каждой организации. Расскажем, как запустить работу с данными прямо сейчас, какие именно образовательные данные обрабатывать и какими инструментами пользоваться. Мастер-класс от Андрея Комиссарова, директора направления «Развитие человека на основе данных» Университета 20.35.

С чем работать

Цифровая трансформация образования включает несколько базовых элементов.

Детально разработанный рубрикатор образовательных результатов. Он отвечает на вопросы, что должен знать и уметь человек, прошедший образовательную программу. Рубрикатор может быть сделан в виде списка, дерева, таксономии, привязан к ситуации на рынке труда. В любом случае, без рубрикатора грамотная разметка данных невозможна.

Диагностика и цифровой след. Вы должны знать аудиторию, с которой работаете, ее специфику. Поэтому с того момента, когда обучающиеся начинают погружаться в программу, нужно размечать, собирать, анализировать и интерпретировать цифровой след образовательного опыта. Цифровой след – это основа дата-инжиниринга.

Компетентностный профиль. Создается на основе цифрового следа, является одновременно и зачеткой, которая показывает глубину освоения материала, и портфолио, если углубиться в специфику цифрового следа и посмотреть, что конкретно сделал каждый обучающийся.

Как работать

Создав рубрикатор по схеме выше, выбираем показатели для диагностики, которые для вас наиболее важны. Может быть, это уровень цифровой грамотности, специфика мышления и т.д. Можно обратиться к цифровому сервису Университета 20.35 «Data+ диагностика».

И когда после диагностики вы уже знаете что-то про студентов, то на уровне педагогического дизайна определяете, какой именно цифровой след вам нужен.

Цифровой след – это закрепленные в данных показатели образовательного опыта. Что человек усвоил, запомнил, понял? Как он взаимодействует с системами, материалами, другими людьми и что ощущает в этот момент (его эмоциональное состояние, фокус, мотивация)?

Подавляющее большинство цифрового следа – тексты.

Для чего собирать цифровой след? Для принятия управленческих решений на основе данных. Цифровой след также позволяет при наличии массивного материала и большого числа обучающихся строить индивидуальные образовательные траектории.

Что можно понять по цифровому следу:

  • Способна ли образовательная программа дать тот результат, который заявлен. Если нет, то почему и что нужно изменить.
  • Способны ли обучающийся или группа достичь этих образовательных результатов. Если не получается, что именно. Проблема может быть в понимании, вовлеченности и т.д.
  • В каком состоянии находятся обучающиеся и какое отношение они демонстрируют к материалу. Без правильного отношения не будет достаточной фокусировки и результата. Поэтому измерять эмоциональный фидбэк необходимо.
  • Часто преподаватели и руководители образовательных организаций действуют в состоянии когнитивного искажения. Они занимаются своей темой давно, им кажется, что все понятно. Обучающиеся же приходят из другой среды, и для них могут оказаться важными не те образовательные результаты, которые предполагались.

Я сам по первому образованию политолог, окончил факультет государственного управления МГУ с красным дипломом. Выпустившись, понял, что не пойду в политологию, но при этом вынес для себя из обучения в МГУ настоящее сокровище. И оно не было связано непосредственно с политологией, но оно было связано с тем, что мы делали. Это системное мышление. Этим навыком, этой компетенцией я зарабатываю всю жизнь. Но при этом в самой образовательной программе этот образовательный результат вообще не значится. Цифровой след помогает понять: что именно важного выносят для себя обучающиеся, в том числе такого, о чем мы с вами не подозревали.

Андрей Комиссаров
Директор направления «Развитие человека на основе данных» Университета 20.35
  • Рефлексия. В конце любого модуля можно дать обучающимся небольшую google-форму с вопросами, на которые нужно отвечать своими словами. Что именно изучалось на модуле? Как это может быть применимо в вашей жизни или профессиональной деятельности? Прокомментируйте свое отношение к материалу, хорошо ли вы его поняли? Ответы обрабатываются с помощью семантического анализа.
  • Вопросы во время лекций. Их анализ также дает много полезной информации о том, что интересует обучающихся.
  • Привязка к LMS (Moodle, Google Class). С ее помощью можно оценить этапность прохождения программы, глубину понимания видеоматериала.
  • Чат-логи. Как известно, на конференциях все самое интересное происходит в кулуарах. Вам тоже нужно создать т.н. кулуары, среду, где обучающиеся смогут просто общаться.
  • Контрольно-измерительные материалы и тесты с привязкой к рубрикатору.
  • Анализ выполнения задач, также в привязке к рубрикатору.
  • Мини-эссе на подтверждение понимания пройденного материала.
  • Взаимооценка мини-эссе. Обучающиеся оценивают друг друга, например, через приложение Peergrade.

Как обрабатывать цифровой след:

  • Строить дашборды. Например, через Google Data Studio или Power BI. Это не очень сложно, и к работе можно привлечь студентов IT-направлений. Примеры дашбордов можно посмотреть здесь и здесь.
  • Проводить семантический или семантико-онтологический анализ. Это основа работы с цифровыми следом. Он помогает понять, как меняется понимание материала обучающимися в процессе курса.

Доступные инструменты для семантического анализа:

  • Российский Advego. Позволяет выявить частотность слов.
  • Испанский Dandelion. Выдает смысловые кластеры, которые вычисляет в тексте. Работает с разными языками, в том числе с русским.
  • Word2Vec, Bert. Более сложные нейросетевые инструменты. Понадобится первичное понимание работы с данными.

Цифровой профиль

После работы с цифровым следом вы получаете информацию о том, чему из запланированного удалось научить курс, а также какие неожиданные знания обучающиеся получили.

Можно создать как упрощенные, так и более сложные цифровые профили программ и самих обучающихся, вплоть до культурного кода и таймлайна развития.

Для тех, кто хочет получить более системные знания, Университет 20.35 проводит онлайн-школы цифровой трансформации. Это практико-ориентированные интенсивы, по итогам которых 80% обучающихся сразу готовы приступать к дата-инжинирингу.

Материал подготовлен по итогам мастер-класса Андрея Комиссарова в рамках Лаборатории EdCrunch Labs «Искусственный интеллект и данные в образовании». Иди в EDE! Образовательный дата-инжиниринг — работа с данными в образовании.

{ "author_name": "2035 University", "author_type": "self", "tags": [], "comments": 0, "likes": 4, "favorites": 6, "is_advertisement": false, "subsite_label": "unknown", "id": 186148, "is_wide": true, "is_ugc": true, "date": "Thu, 10 Dec 2020 19:52:13 +0300", "is_special": false }
0
0 комментариев
Популярные
По порядку

Комментарии

null