Повторное обучение — это ещё одна итерация жизненного цикла модели, в которой, по сути, используются те же методики, что и при обучении. При снижении точности прогнозов можно обучить модель на обновлённых массивах данных, чтобы она могла обеспечивать более точные результаты. Иными словами, мы частично обновляем способности генерации прогнозов модели. Однако это не значит, что при повторном обучении можно добавлять новые признаки, избавляться от старых или полностью менять алгоритм. При повторном обучении обычно используется тот же алгоритм, но ему передаются новые данные. Впрочем, вполне возможно автоматизировать обновления модели целиком при помощи autoML и платформ MLaaS.