Будущее Yulia Kovaleva
3 036

Квантовая революция: что нас ждет ближайшие 10 лет

Директор московского центра разработки First Line Software Владимир Литошенко о квантовых компьютерах, которые появятся в ближайшие 10 лет и на порядки превзойдут классические компьютеры.

В закладки

Наша компания First Line Software стоит по сути на трех “китах” - сплоченная команда инженеров-разработчиков, эффективные, проверенные годами процессы ведения проектов и новейшие технологии, которые мы применяем в проектах.

Третий “кит” и является триггером для меня. Квантовые компьютеры уже реальность. Да, они нестабильны, да, они пока существуют в единичных экспериментальных экземплярах, но они уже есть. В скорой перспективе квантовые компьютеры войдут в реальный сектор экономики. И тогда рынку потребуются компании-разработчики ПО, которые умеют программировать под квантовые компьютеры. Чтобы занять в этом направлении свою нишу, нужно начинать готовиться уже сейчас.

Развитие классического компьютера идет по пути уменьшения размера и увеличении плотности транзисторов, которые лежат в основе работы процессора. Но производительность процессоров ограничена разрешающей способностью литографического оборудования, задействованного в производстве чипов. Проще говоря, это размер «точки», с которой оборудование способно работать. Размеры «точек» действительно микроскопические, сейчас минимальная цифра — 7 нанометров (это миллиардные части метра). И чем меньше значение, тем компактнее чипы. Но уменьшение не может быть бесконечным, оно ограничено размером атома.

Согласно наблюдению Гордона Мура, одного из основателей Intel, предел производительности классических компьютеров наступит приблизительно к 2030 году.

Квантовые технологии позволят нам перешагнуть это ограничение. Квантовый компьютер - это новый тип устройства для вычислений. Для его работы используются не транзисторы, а квантовые частицы. Благодаря этому можно добиться выигрыша в решении ряда математических задач. Оптимистично надеюсь, что нам удастся создать квантовый компьютер в течение следующего десятилетия. Тогда такие процессы, как мгновенная передача данных на любые расстояния, проведение супер-сложных вычислений за доли секунды, станут обыденной реальностью, вероятно, уже для наших детей.

Квантовый компьютер обещает революцию в целом классе задач - информационная безопасность, искусственный интеллект, обработка больших данных. Нас ожидает колоссальный прорыв в фармацевтике, медицине, биохимии, наноэлектронике, криптографии. Это те отрасли, которые уже сейчас остро сталкиваются с проблемой ограничения вычислительных мощностей.

First Line Software разрабатывает очень много программных решений для медицины. Это область, где возможность быстро обрабатывать огромные данные и принимать правильные решения может стоить жизни человека. Во всем мире (я наблюдаю это в Европе, США, Канаде, России) медицина переходит из модели «заболел - лечим» в модель постоянного мониторинга, контроля, «доводки», поддержки здоровья каждого человека. Начиная со сбора и анализа данных о состоянии здоровья в режиме реального времени, заканчивая 3D-печатью витаминов/лекарств, которые специально разработаны под человека и его текущее состояние. Для того, чтобы построить цифровую модель человека (цифровой двойник) и моделировать/прогнозировать его состояние, требуются возможности, которые дает нам квантовый мир.

Буквально пять лет назад возникло понятие квантовой гонки: кто первым произведёт переворот – тот займёт нишу и получит доход, многократно превышающий вложенные финансы. За последние три года частные инвесторы вложили в направление $147 млн. Правительства государств мира в общей сложности - более $2 миллиардов, в том числе $550 млн от стран Евросоюза (по данным Фонда «Центр стратегических разработок «Северо-Запад»).

Крупные корпорации вышли на довольно высокий уровень производства экспериментальных моделей. Так что шансы к 2030 году увидеть в реальном секторе решения на базе квантовых компьютеров есть. Думаю, что пионерами будет кто-то из тройки Intel, IBM, Google. Не буду удивлён, если сильный рывок вперёд сделают коллеги из Китая. В 2016 году они вывели на орбиту первый квантовый спутник. Он используется для квантовых оптических экспериментов, таких как квантовая криптография и квантовая телепортация.

В России исследованиями в области квантовой физики занимается Российский квантовый центр, открытый в 2010 году. Летом 2017 года его руководитель Михаил Лукин объявил, что совместно с учеными из Гарвардского и Массачусетского технологических университетов был создан и протестирован квантовый элемент на 51 кубит. Созданное устройство пока является самой сложной вычислительной системой такого рода. Но вместе с этим – это все еще не квантовый компьютер.

Помимо РКЦ фундаментальные научные изыскания осуществляются на базе МГУ (кафедра суперкомпьютеров и квантовой информатики), СПбГУ (факультет прикладной информатики), Институт физики твердого тела РАН.

В российских вузах также существует методика работы, связанная с развитием прикладных аспектов квантовых технологий и внедрением разработок в реальную жизнь. В какой-то степени мы реализуем американскую модель spin-off, когда молодые сотрудники создают фирмы на базе университетов для коммерциализации научных разработок.

Сегодня квантовые технологии уже появляются в открытом доступе. Корпорация IBM открыла доступ к своему квантовому компьютеру. Так что учёные и исследователи всего мира могут производить там свои вычисления. Но даже если у вас нет глубоких познаний в квантовой физике, вы всё же можете уже попробовать новейшие технологии - у вас есть возможность сыграть партию в квантовые шахматы. Это модификация обычных шахмат, добавляющая на шахматную доску законы квантовой механики. Фигуры могут находиться на нескольких клетках одновременно; быть одновременно живыми и мертвыми, как кот Шредингера; проходить "сквозь" друг друга; находиться в состоянии квантовой запутанности и мгновенно коллапсировать при измерении.

В тот момент, когда квантовые компьютеры перейдут из разряда научных исследований в разряд промышленных решений, потребуются программисты, которые на базе данной платформы смогут разрабатывать эффективные информационные системы. В First Line Software мы намерены побороться за лидерство в этой области.

#it #soft #firstlinesoftware #scrum #agile #нанотехнологии #наноинновации

Материал опубликован пользователем. Нажмите кнопку «Написать», чтобы поделиться мнением или рассказать о своём проекте.

Написать
{ "author_name": "Yulia Kovaleva", "author_type": "self", "tags": ["\u043d\u0430\u043d\u043e\u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0438","\u043d\u0430\u043d\u043e\u0438\u043d\u043d\u043e\u0432\u0430\u0446\u0438\u0438","soft","scrum","it","firstlinesoftware","agile"], "comments": 7, "likes": 15, "favorites": 20, "is_advertisement": false, "subsite_label": "future", "id": 48084, "is_wide": false, "is_ugc": true, "date": "Thu, 18 Oct 2018 13:01:36 +0300" }
{ "id": 48084, "author_id": 205443, "diff_limit": 1000, "urls": {"diff":"\/comments\/48084\/get","add":"\/comments\/48084\/add","edit":"\/comments\/edit","remove":"\/admin\/comments\/remove","pin":"\/admin\/comments\/pin","get4edit":"\/comments\/get4edit","complain":"\/comments\/complain","load_more":"\/comments\/loading\/48084"}, "attach_limit": 2, "max_comment_text_length": 5000, "subsite_id": 199118 }

7 комментариев 7 комм.

Популярные

По порядку

Написать комментарий...
3

"Размеры «точек» действительно микроскопические, сейчас минимальная цифра — 7 нанометров (это миллиардные части метра). И чем меньше значение, тем компактнее чипы. Но уменьшение не может быть бесконечным, оно ограничено размером атома."

ИМХО: На самом деле, 7нм это маркетинг. Реально в таком процессе используется фотолитография в глубоком ультрафиолете 193нм. А уменьшение ограничено не размером атома, а длиной волны электрона. В кремнии это примерно 10нм. Ниже этой длины канала в транзисторе электрон будет перепрыгивать через потенциальный барьер канала с некоторой вероятностью.

ИМХО2: В тексте говорится про 51-кубитную квантовую систему, но в том же году уже была представлена 53-кубитная квантовая система другого коллектива https://www.nature.com/articles/nature24654
До практического применения надо запутать сотни, тысячи кубит.

Ответить
2

Дмитрий приветствую.
Спасибо за комментарий. Я привел в своей презентации примеры наиболее известных физических реализаций квантовых компьютеров. 53-кубитный квантовый симулятор, о котором пишете Вы, это интересное решение. Я правда не до конца понял из статьи - есть его физическая реализация или это все же симулятор? У Вас нет более подробной информации по данной разработке?
По поводу практического применения - пока есть две проблемы - это стабильное "производство" запутанных частиц и борьба с декогеренцией. Пока что и там и там разработчики испытывают сложности. Как-только эти проблемы будут решены, построение 100+ кубитных машин перейдет на промышленный уровень, по моей оценке.
С уважением,
Владимир Литошенко

Ответить
2

Добрый день, Владимир.
В статье написано, что квантовые симуляторы - это ограниченный тип квантового компьютера, который использует кубиты для имитации сложной квантовой материи. В данном случае у них исследуется возникновение магнетизма в материалах. И система реально собрана.

Я так понимаю 100 кубитный квант. компьютер в сравнении с классическим при использовании классических алгоритмов на квантовом с учетом всех особенностей (адаптации, трансляции кода) выигрыш на квантовом, если и даст, то минимальный. Поэтому нужно создавать специальные алгоритмы и языки, чтобы правильно использовать все возможности?

С Уважением.
Спасибо.

Ответить
2

Естественно )). без квантовых алгоритмов это очень-очень-очень дорогой 100-битный калькулятор ))

Ответить
2

Ребята как круто, что вы нашли друг друга здесь и смогли поговорить)

Ответить
1

Если б не твой комментарий, я б прочитала статью зря😂😂😂

Ответить
0

Ничего не понял. Но оставлю комментарий для истории.

Ответить
0
{ "page_type": "article" }

Прямой эфир

[ { "id": 1, "label": "100%×150_Branding_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox_method": "createAdaptive", "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfl" } } }, { "id": 2, "label": "1200х400", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfn" } } }, { "id": 3, "label": "240х200 _ТГБ_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fizc" } } }, { "id": 4, "label": "240х200_mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "flbq" } } }, { "id": 5, "label": "300x500_desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "ezfk" } } }, { "id": 6, "label": "1180х250_Interpool_баннер над комментариями_Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "ffyh" } } }, { "id": 7, "label": "Article Footer 100%_desktop_mobile", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjxb" } } }, { "id": 8, "label": "Fullscreen Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjoh" } } }, { "id": 9, "label": "Fullscreen Mobile", "provider": "adfox", "adaptive": [ "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fjog" } } }, { "id": 10, "disable": true, "label": "Native Partner Desktop", "provider": "adfox", "adaptive": [ "desktop", "tablet" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyb" } } }, { "id": 11, "disable": true, "label": "Native Partner Mobile", "provider": "adfox", "adaptive": [ "phone" ], "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "clmf", "p2": "fmyc" } } }, { "id": 12, "label": "Кнопка в шапке", "provider": "adfox", "adaptive": [ "desktop" ], "adfox": { "ownerId": 228129, "params": { "p1": "bscsh", "p2": "fdhx" } } }, { "id": 13, "label": "DM InPage Video PartnerCode", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox_method": "createAdaptive", "adfox": { "ownerId": 228129, "params": { "pp": "h", "ps": "bugf", "p2": "flvn" } } }, { "id": 14, "label": "Yandex context video banner", "provider": "yandex", "yandex": { "block_id": "VI-223676-0", "render_to": "inpage_VI-223676-0-1104503429", "adfox_url": "//ads.adfox.ru/228129/getCode?pp=h&ps=bugf&p2=fpjw&puid1=&puid2=&puid3=&puid4=&puid8=&puid9=&puid10=&puid21=&puid22=&puid31=&puid32=&puid33=&fmt=1&dl={REFERER}&pr=" } }, { "id": 15, "label": "Плашка на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byudx", "p2": "ftjf" } } }, { "id": 16, "label": "Кнопка в шапке мобайл", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "adfox": { "ownerId": 228129, "params": { "p1": "byzqf", "p2": "ftwx" } } }, { "id": 17, "label": "Stratum Desktop", "provider": "adfox", "adaptive": [ "desktop" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvb" } } }, { "id": 18, "label": "Stratum Mobile", "provider": "adfox", "adaptive": [ "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "pp": "g", "ps": "bugf", "p2": "fzvc" } } }, { "id": 19, "label": "Тизер на главной", "provider": "adfox", "adaptive": [ "desktop", "tablet", "phone" ], "auto_reload": true, "adfox": { "ownerId": 228129, "params": { "p1": "cbltd", "p2": "gazs" } } } ]
Приложение-плацебо скачали
больше миллиона раз
Подписаться на push-уведомления
{ "page_type": "default" }