Чтобы не было мусора на входе, достаточно одного человека со стороны компании, который будет знать, как корректно вводить факторы и данные. Задача этого сотрудника: обучить всех пользователей платформы правильно и единообразно заносить информацию, чтобы ее без ошибок обрабатывал ИИ. Также, чтобы избежать случайных ошибок при внесении информации, система сама перепроверяет данные и выявляет грамматические ошибки, дубликаты букв, пробелы и т.д.
20 лет назад, Nike внедрила forecasting (i2). Из за глюка потеряли $100млн (в 2001м) и акции упали на 20%.
https://www.cfo.com/technology/2001/03/how-not-to-spend-400-million/
Интересно, может-ли такой случай повториться в 2021?
Оказывается это и опасно. Такой прецедент может и повториться ,никто не застрахован.
Супер! Скажите пожалуйста как пользоваться этой системой. Как-то не понял.
Илья, добрый день. В одном сообщении не рассказать. Но если у Вас есть интерес, не стоит ограничиваться рамками чата! С удовольствие расскажем и покажем.
Социализм близко
На самом деле фишка со сквозным обменом информацией между поставщиком и покупателем далеко не новая, особенно в продуктовом сегменте. Бывает такое, что поставщик видит остатки у продавца на складах, динамику продаж и по этим данным планирует производство и поставки. Конечно тут очень важен уровень партнерства и обратная связь. Никто не хочет произвести партию, не зная, что она будет выведена из ассортимента продавца и остаться с неликвидом на складе.
Вячеслав, абсолютно верно. Но важно смотреть не только на стоки, пусть даже в динамике. А учитывать планы продаж с учетом факторов (промо, новинки, листинги и т. д.). Ведь, даже если какой-то товар продавался годами без стимулирующих мероприятий, то внезапно запланированное промо, да ещё и совмещённое со входом в новую сеть осушить товарные запасы за несколько дней. ALIDI предоставляет планы по своим заказам в горизонте 8 недель и за 2 недели до даты, в которую товар должен оказаться на складе, производит заказ.