Зачем бизнесу ML и AI

Всем привет! Я Женя Лобанов, директор по стратегическому развитию в AGIMA. Мы уже 15 лет занимаемся заказной разработкой — помогаем нашим заказчикам внедрять digital-решения.

Пару лет назад наша компания вплотную занялась разработкой обучающихся алгоритмов. В этой статье расскажу, почему мы вообще обратились к этой сфере и зачем выделили её в отдельное направление. Уверен, наш опыт поможет другим компаниям найти точки роста и масштабироваться.

Зачем бизнесу ML и AI

Как пришли к ML

Машинное обучение и искусственный интеллект захватывают мир. Мы каждый день пользуемся сервисами, в основе которых обучающиеся алгоритмы. Они упрощают жизнь: помогают с покупками, подбирают машину, советуют музыку. По прогнозам Business Insider, только рынок чат-ботов к 2024 году вырастет до 9,4 млрд долларов.

Наша внутренняя статистика подтверждает тренд. Со второго квартала 2020 по третий квартал 2021 года мы получили 2808 заказов. Из них 120 — запросы на продукты с использованием обучающихся алгоритмов. То есть 4% заказов — это заказы именно такого типа. В 2018–2019 году таких было всего 0,5%. За несколько лет спрос вырос почти в 8 раз.

Зачем бизнесу ML и AI

Но даже не это заставило нас внимательнее следить за ML. В тот же период 2020–2021 года 80% заказчиков, с которыми мы уже работали, попросили внедрить в их продукты новые технологии. И все эти технологии подразумевали полное или частичное применение искусственного интеллекта.

Зачем бизнесу ML и AI

В чем сила ML

Почти все наши заказчики, особенно из финтеха и ритейла, обзавелись чат-ботами. Яркий пример — АльфаСтрахование. Их клиенты через Telegram-бота оформляют полисы. Это снимает нагрузку с их сайта и колл-центра и увеличивает лояльность клиентов. Чтобы получить страховку, ты просто открываешь привычный мессенджер.

Позже мы стали чаще применять другие механики машинного обучения. Например, для умных рекомендательных систем. В классической схеме рекомендации основываются на статистике. Большинство покупателей онлайн-магазина вместе с томатной пастой берут оливковое масло и спагетти. Значит, если вы покупаете томатную пасту, система предложит вам именно оливковое масло и спагетти. Стоит ассортименту смениться, статистика обнуляется. В магазине больше нет того самого оливкового масла. Теперь вместе с томатной пастой вам посоветуют только макароны. Ваш итальянский ужин не состоится.

Но обучающиеся алгоритмы не допустят этого. Они анализируют описание товара при его добавлении в каталог и делают рекомендации исходя из самой его сути. Нет популярного оливкового масла — предложат менее популярное. Нет и его — предложат льняное или подсолнечное. Без масла вы не останетесь. В этом сила «умных» рекомендаций — они оперируют не статистикой.

Технологии искусственного интеллекта способны выполнять работу, в которой несколько лет назад нельзя было обойтись без человека. Например, мы научили робота ЭкоБот сортировать мусор. Программа распознает на конвейере пластик, стекло, металл и картон. Потом механическая рука распределяет разные типы мусора по разным контейнерам. Человеку остается контролировать и доучивать машину.

Эти примеры на практике показали, в чем преимущества обучающихся алгоритмов:

  • сокращают рутину за счет ТГ-ботов;
  • улучшают продажи за счет рекомендательных систем;
  • помогают находить целевую аудиторию через новые SMART-каналы;
  • делают клиентский сервис удобнее за счет автоматизации;
  • уменьшают издержки благодаря алгоритмам.

Данные исследований, наша внутренняя статистика и успешные кейсы убедили нас, что в будущем цифровой продукт без технологий машинного обучения обречен проигрывать конкурентам. Эта мысль стала отправной точкой для нашего нового направления — AGIMA.AI.

Почему отдельное направление

Мы не хотели работать над ML-проектами силами наших отделов аналитики и разработки. Тому было две причины:

  • проектирование обучающихся алгоритмов требует больше усилий на исследование модели данных;
  • для этой работы нужны уникальные компетенции.

Вместо этого мы выбрали другую стратегию. Она состояла из трех элементов:

  • Инкапсулировать весь процесс разработки с использованием искусственного интеллекта и машинного обучения в отдельное направление.
  • Явно очертить разницу между нашим отделом продуктовой аналитики и новым направлением.
  • Прокачать проектные офисы по таким компетенциям, как статистика в машинном обучении, экспериментальный анализ данных, добыча данных и т. п.

Как инкапсулировали направление

Мы собрали все текущие запросы и проекты по доработке продуктов по направлениям AI и ML. Смогли сформировать набор услуг, кейсов и выделить УТП по этим направлениям. Таким образом у нас сформировалась обёртка нового направления.

Отделить специалистов по этим проектам и сформировать управляющую структуру администрации нам помогло объединение с топовой компанией в этом сегменте.

Все наши активности мы моделируем в виде примитивного PnL (отчёта о доходах и убытках). Учитываем текущую выручку и потенциальный рост по конкретному направлению, а также все необходимые затраты (распределяем по головам производственников, поэтому инкапсуляцию провести легче). И в итоге видим потенциал направления и необходимые стратегические решения для его роста. Более подробно об этом можно почитать в моей статье про управленческий учёт.

Где граница между AGIMA и AGIMA.AI

Если в AGIMA приходят за комплексным редизайном или запуском нового продукта, то отдел продуктовой аналитики строит модель того, каких бизнес-показателей достигнем после запуска и за счёт чего. AGIMA.AI же исследует текущий или новый продукт для улучшения клиентского сервиса по профилю рекомендательных систем, компьютерного зрения, предсказания, чат-ботов, анализа текста, BI и т. п.

При этом, так как AGIMA занимается комплексной разработкой и интеграцией digital-продуктов, без компетенций проведения количественных, качественных исследований, предпроектного обследования, написания заданий на проектирование и запусков в софт-лонче/сплит-тестах мы не могли бы существовать. Но компетенции в статистике и понимании, как реализовывать обучающиеся алгоритмы, только дополняют весь веер наших компетенций.

Какие компетенции нужны для ML

Мы учитывали статистику (годовой прирост оборота по первому году и новым компетенциям выходил в районе 10%), потенциальные темпы роста, затраты на специалистов и повышение компетенций проектных офисов. Всё это помогло нам оптимизировать модель для эффективного старта нового направления.

Основные навыки, которые мы прокачали у наших проектных офисов для комфортной коммуникации со специалистами нового направления:

  • Формализация и формулировка самого вопроса, на который можно ответить статистически.
  • Вычисление, понимание и интерпретация метрик производительности: например, p-значение, ошибка первого и второго рода и другие.
  • Вычисление, понимание и интерпретация общих статистических данных.
  • ANOVA — понимать, как делают выводы из оценок местоположения и изменчивости.
  • Как применять матстатистику релевантно области использования.
  • Понимание процесса разработки экспериментов по проверке гипотез.

Также важно было интегрировать новые процессы в уже отлаженные. Поэтому мы провели большую организационную работу и поменяли текущие регламенты с учетом новых обстоятельств:

  • Мы описали отдельный раздел в нашей базе знаний по всем процессам и необходимым компетенциям.
  • Добавили соответствующие навыки во все регламенты и чек-листы по грейдированию руководителей проектов и тимлидов.
  • Провели презентацию нового направления и компетенций на нашей обязательной встрече Managers Club.
  • Для закрепления результатов выработали дополнительную мотивационную схему для руководителей проектов, которые смогут внедрить компетенций AI и ML на своих продуктах.

Что в итоге

Чтобы освоить новый рынок, мы смоделировали новое направление работы компании. Это помогло нам организовать его максимально эффективно:

  • задать вектор развития для наших специалистов;
  • использовать уже имеющуюся инфраструктуру AGIMA;
  • достичь оптимальной ставки часа.

В результате мы получили новые компетенции, которые умеем масштабировать на наши проектные офисы. И теперь, вновь убедившись на собственном опыте, можем утверждать, что при правильном подходе к организации новых направлений вы не потеряете инвестиции, вложенные в повышение квалификации своих сотрудников, а сможете найти точку роста для своего бизнеса.

Мы уже запустили несколько проектов, которыми мы с вами пользуемся:

В статье я попытался рассказать, как и почему мы открыли направление искусственного интеллекта и машинного обучения. Надеюсь, что она поможет увидеть другим компаниям свои точки роста и масштабироваться.

7575
40 комментариев

Комментарий недоступен

14

Спасибо за ваш комментарий.
Лояльность формируется благодаря тому, что пользователь получает доступность бизнеса 24/7 (а не от использования конкретных инструментов). Безусловно, такую доступность бизнеса можно организовать и без чат-ботов. Но это значительно дороже.
Поэтому если использовать омниканальный подход и современных ботов на базе ИИ, то клиент в любое время суток может получить полный и качественный ответ, что повысит его лояльность.
К сожалению, открыть данные nps конкретно в этом кейсе до и после — не могу. Но это общий тренд и коллеги из маркетингового агентства hubspot отлично его описали (не только про чат боты, а в том числе про разные инструменты для урегулирования кризиса недоверия к бизнесу).
https://blog.hubspot.com/service/customer-acquisition-study

5

вы просто не пользовались их сайтами и колл-центром. я весной оформлял страховку, так у меня от их UX глаза кровоточили. Начиная, что ребята, пилившие формы, ни разу не видели даже как в паспорте данные сформированы. Продолжая 404 ошибками на страницах с условиями программ. Неспособностью подгрузить старые данные пользователя во всратые огромные формы. Приложение для трубы, которое скачет через какие то левые домены аутсорс конторок.

Цель использования чат-ботов - сэкономить на поддержке (именно так оно и продаётся направо и налево).
Эффект от внедрения - разгневанные клиенты, не получающие помощи от бота и не получающие консультации от человека. О какой лояльности речь если эффект прямо проитивоположный?
Вы хоть раз видели адекватного чат-бота? Я не видел ни разу. За последние лет 5 боты решили ноль моих проблем, зато заставили потратить кучу времени на вызов оператора.
У Альфы боты - полное дно. Не просто дно, а днище! Стыдно такое в пример ставить.
Что же до лояльности - то респект Тиньков, когда бот без выкрутасов переключает на живого оператора.

4

уже все боты переключают вроде как.
просто орешь в трубку до посинения - слова "оператор" и "консультант".
вот тебе и весь ML.

Когда видишь чат-ботов, как пример работающего МЛ, - это сразу отличный маркер, что перед тобой успешный успех.

4

Там есть и другие примеры, но виртуальный ассистент (чат-бот на нейросетках) — хороший пример, поэтому не совсем понял ваш комментарий.
Там используются обучающиеся алгоритмы, которые сравнивают реплики пользователя по лексическому смыслу. Вполне себе ML.