Алло, это клиент? Автоответчик на отзывы на маркетплейсах

Лучший способ мотивировать клиента на повторные покупки и привлекать новых — реагировать на обратную связь, показав, что с вами точно можно сотрудничать. Но что делать, если отзывов слишком много?

<i>Алло, это клиент!</i>
Алло, это клиент!

В прошлом посте я делился заповедями по работе с маркетплейсами, одна из них — автоматизировать свою работу. В этот раз я расскажу подробнее, как настроить автоответы на отзывы и подходят ли для этой задачи боты.

А мне точно нужны автоматические ответы на отзывы?

Ответ прост: да, точно нужны или да, скорее всего нужны. Почему так?

Безусловно, первое впечатление о селлере создают логотип и карточка товара. Но окончательное решение о покупке принимается на основе отзывов покупателей и ответов продавца на них. Согласно исследованию BrightLocal, для половины пользователей онлайн-отзывы так же ценны, как личные рекомендации. Ответы селлера показывают, что ему небезразличны клиенты, а, значит, и к товарам он относится ответственно. Показав покупателям, что их мнение важно, селлер повышает лояльность и вероятность повторной покупки.

Для крупных компаний, обрабатывающих ежедневно большое количество отзывов, автоматизация ответов — необходимость. Качественно обработать и проанализировать до миллиона сообщений от клиентов за месяц — задача либо малореальная, либо сильно затратная.

<i>Робот ждет работу. Кадр из мультфильма “Ну, погоди!” </i>
Робот ждет работу. Кадр из мультфильма “Ну, погоди!” 

Есть ли смысл использовать автоответчик на отзывы в небольшом магазине? Да, и математика тут простая.

Ответы на простые отзывы вроде “Все супер, спасибо” много времени не займут. Прочесть отзыв, понять о чем он, зайти в табличку, найти и скопировать ответ, вернуться на страницу отзыва, вставить ответ — если делать это не отвлекаясь, можно ограничиться 3 минутами. Если же отзыв сложный, то может потребоваться больше времени, на то, чтобы осознать и проанализировать нестандартную ситуацию и понять как отвечать покупателю — вероятно, если случай необычный, придется написать ответ. Все вместе это может занять около 20 минут. Получается, в среднем, если магазин отвечает на простые и сложные отзывы, селлеру нужно тратить 11,5 минут на один ответ, для удобства подсчетов округлим до 10 минут.

Если магазин получает 240 отзывов в месяц, значит, целая рабочая неделя, 40 часов, уйдет на одну лишь обработку отзывов. А это время, которое селлер мог бы потратить на развитие магазина. Если же нанимать оператора, который будет отвечать за вас, то это обойдется минимум в 20 тысяч рублей. Минимальный же тариф в Спикс, который включает в себя 500 ответов в месяц на отзывы на Wildberries, Ozon и Яндекс Маркет стоит 4 900 рублей и 40 сэкономленных часов. Проверьте, подходит ли он вам.

И как же настроить автоответы на отзывы?

Существует несколько вариантов:

  • Написать скрипт для ChatGPT или Google Sheets

По сути вы создаете собственный бот, каким будет алгоритм его работы вы решаете сами.
Плюс: гибкая настройка под ваши нужды.
Минус: есть риск больше времени тратить на настройку системы, чем на ответы на отзывы.

Написание скрипта для чат-бота потребует некоторых технических знаний. Селлеру придется поработать с интерфейсом программирования приложений (API) на маркетплейсе и с аналогичным интерфейсом ИИ.

Важно помнить, что ChatGPT не создавался под отзывы на маркетплейсе, чат-бот обучен на всех текстах из интернета, поэтому возможны неожиданные ответы. Если выберете этот инструмент, рекомендуется дообучить нейросеть под свои нужды.

В Гугл-таблицах можно настроить генератор шаблонов. Нужно самостоятельно (либо с помощью ChatGPT) прописать ответы на отзывы, после чего таблица будет комбинировать ответы и составлять уникальные. Ключевое преимущество — вам не нужно каждый раз придумывать ответ, хотя и придется вложить немало времени для настройки шаблонов. К тому же количество комбинаций текста ограничено, поэтому вскоре ответы начнут повторяться.

  • Завести телеграм-бот

Плюс: телеграм-бот — самый простой инструмент для автоматизации ответов.
Минус: телеграм-бот сильно ограничен в функциональности и в точности работы с отзывами.

Существует два вида ботов. Первый — алгоритмический. Такой бот работает по заранее заданным сценариям и отвечает шаблонно, реагируя на ключевые слова и фразы. Например:

Покупатель: Товар пришел быстро, спасибо.
Бот: Добрый день! Мы рады, что вы получили покупку вовремя, ждем вас снова.

Однако:

Покупатель: Товар пришел вовремя, спасибо. Но то, что я увидел внутри коробки — это жесть
Бот: Добрый день! Мы рады, что вы получили покупку вовремя, ждем вас снова.

Бот не определяет контекст отзыва, что делает точность ответа низкой. И вместо положительного эффекта это может вызвать у покупателей недоумение. Второй тип — боты на основе нейросети — понимают контекст, но для них свойственны те же проблемы с интерфейсом и ограниченным функционалом.

  • Воспользоваться универсальным сервисом

Существуют два вида сервисов по работе с отзывами. Оба автоматизируют ответы на отзывы, но делают это по-разному. Первый тип — универсальный. Изначально нацеленные на анализ рынка и ниш, а также управление продажами на маркетплейсе, в какой-то момент такие сервисы выпустили обновление с возможностью отвечать на обратную связь с помощью шаблонов или ИИ. С такими сервисами вы получаете многофункциональный инструмент. Однако в них весьма непросто разобраться. К тому же у таких сервисов основное внимание уделяется наиболее востребованным функциям, составляющим ядро и сердце этих продуктов. Ответы на отзывы — скорее бонус.

Поэтому здесь выбор за селлером. Для вас важнее: всего по чуть-чуть или же полноценная автоматизация коммуникации с клиентами?

  • Использовать специальные сервисы

Оптимальный вариант для качественной работы с обратной связью — это сервис, разработанный под ответы на отзывы. Ключевая задача таких сервисов — сделать все, чтобы покупатели на маркетплейсе были довольны общением с магазином.

Специально для этой цели мы разработали сервис Спикс. Он обработал более 10 миллионов отзывов: для небольших магазинов и для селлеров, входящих в топ-20 по объемам продаж на российских маркетплейсах.

Что умеет Спикс? Первая часть движка сервиса, разработанная нами нейросеть, анализирует контекст отзывов и распределяет их по 40 темам. Затем черед автоматизации. Она может ответить на отзыв с помощью шаблонов: благодаря работе с крупными селлерами в библиотеке Спикс собрано более 2,500 ответов на самые распространенные сообщения покупателей. Второй вариант — ответ искусственного интеллекта на основе GPT4 Omni. Тексты предыдущей версии ChatGPT уже были неотличимы от написанных человеком, а с обновлением Omni владение ИИ языком вышло на новый уровень. Еще более естественная речь и гибкая настройка tone of voice дают покупателям ощущение коммуникации с приветливым и ответственным менеджером.

<i>Примеры ответов на отзывы в Спикс</i>
Примеры ответов на отзывы в Спикс

При необходимости с помощью Спикс селлер может отвечать на отзывы вручную в удобном интерфейсе, облегчающем задачу. На нестандартные отзывы можно генерировать уникальные ответы прямо из панели администратора.

При необходимости с помощью Спикс селлер может отвечать на отзывы вручную в удобном интерфейсе, облегчающем задачу. На нестандартные отзывы можно генерировать уникальные ответы прямо из панели администратора.

Не заметят ли клиенты, что отвечает не человек?

Хороший вопрос, но ответ очень прост: нет. ChatGPT прошла тест Тюринга.

Тест Тьюринга — это способ определить, может ли компьютер мыслить и общаться как человек. При тестировании исследователь взаимодействует с компьютером и другим человеком через текстовые сообщения, не зная, кто есть кто. Если не удается отличить, с кем происходит коммуникация, — с компьютером или человеком — значит, компьютер демонстрирует “мышление” на человеческом уровне.

Исследования показывают, что большинство покупателей не замечают разницы между ответами от ИИ, и ответами, написанными человеком. Клиенту важно получить четкий ответ на его конкретное сообщение. Нейросети, заточенные под ответы на отзывы, справляются со своей работой со снайперской точностью. В отличие от операторов, которые по данным Спикс отвечают в среднем через 30 часов после получения отзыва, ИИ справляется за 15 минут. Оставьте время для больших дел, а рутину отдайте на аутсорс, где ей самое место.

Эту статью публиковали и в Блоге Спикса. Рассказываем там, как тратить меньше времени на работу с отзывами и получать больше довольных покупателей.

2222
11
38 комментариев

Сервис реально экономит время. Вот смотрите, ребята. Даже если точка продаж маленькая, в ней пашет чаще всего владелец, который сам зашивается с продажами, даже ответы на 5-10 отзывов это уже отрыв от рабочего процесса и опять же потеря времени. Пусть сервис пашет, а нам свободная время на продажи. С другой стороны, есть солидные клиенты, которых хлебом не корми дай поговорить и вступить в переписку, с такими проще сесть и самому отвечать из расчета на перспективного денежного клиента.

1

Удобно, когда сервис позволяет делать и то и то

1

Быстрая обратная связь, для клиента конечно очень важна. Тем более сейчас технологии не стоят на месте, ИИ отлично справляется со многими задачами.

1

Ага, а мы его заставляем работать

1

Скоро чатгпт всех заменит, но лучше конечно хоть от него получить информацию в ответе чем вообще не получить.

1

соглашусь, отзывы и ответы на них – часть продуктовой витрины

Отвечаю шаблонами через гугл шитс. Но за бесплатно можно и попробовать че то новенькое

1