Новые MacBook и iPad Air
Посадка на Луну
Котодиско у Hyundai
Nothing Phone (3a) и (3a) Pro
Focus 2 Ultra от Nubia
Возможный релиз MacBook Air?
Автопилот Tesla на бездорожье

Как используются большие данные в бизнесе: примеры и сервисы

Big Data (большие данные) стали наступившим будущем. Одни определяют их как революцию, другие отводят им роль оптимизаторов бизнес-процессов. Но все сходятся в одном: большие данные важны. Встает главный вопрос — как можно эффективно применять большие данные в бизнесе?

<p>Weerapatkiatdumrong</p>

Weerapatkiatdumrong

Что говорит статистика?

Последние 10 лет происходит непрерывный рост числа компаний, использующих большие данные.

В 2011 г. большие данные уже использовались гигантами бизнеса — Hewlett-Packard, IBM, Microsoft.

В 2015 г. доля компаний, использующих большие данные, составляла 17% в мире.

Сегодня доля таких компаний — 50%.

И это неудивительно — сбор и анализ больших данных дает важные преимущества:

  • Информация поступает из разных источников, что делает ее достоверней;

  • Информация поступает постоянно, что делает ее актуальной;
  • Данные не анализируются вручную, что уменьшает количество ошибок и увеличивает объем информации, возможный для обработки;

  • У компании есть централизованный доступ к информации.

Что происходит на российском рынке?

Российский рынок больших данных уступает своим масштабом западному, но 55,4% отечественных компаний уже начали инвестировать в аналитику Big Data. На практике мы видим не один пример успешной попытки интегрировать большие данные в бизнес. Например, Сбербанк с его ботами-операторами, заменяющими консультантов. Или гипермаркет Hoff, который на основе больших данных формирует персональные предложения клиентам.

С малым бизнесом и большими данными сложнее. Процесс интеграции больших данных в бизнес — удовольствие дорогое и сложное. Встает вопрос, способен ли малый бизнес на такие подвиги? Что говорят специалисты?

Малый бизнес может данные купить, интегрировать и экстраполировать в свои задачи. Например, есть сеть магазинов по продаже настольных игр «Мосигра». Каждая торговая точка продаж - отдельный малый бизнес. В своей работе они используют big data от торгового центра, где представлен магазин. На основе этих данных корректируют продажи и способы привлечении аудитории. У каждого ТЦ эти данные разные, что позволяет каждому магазину быть востребованным.

Дмитрий Спиридонов, Сооснователь, генеральный директор CloudPayments

Есть смысл с самого старта бизнеса собирать максимальное количество данных, накопить как можно больше метрик. Когда бизнес начнет стагнировать, будет достаточно информации, чтобы понять, что происходит.

Константин Баев,

IT-директор компании Domino’s Pizza

Малый бизнес более динамичен, конкуренция в разы больше, чем «у больших». Сложность вызывает стоимость, которую малый бизнес не готов платить за собственную платформу. Поэтому вариант для небольших компаний — покупать сервисы, которые продают готовую аналитику.

Сергей Чернов, Директор по разработке программного обеспечения компании CTI

Что показывает практика?

Кейс Hoff

Как используются большие данные в бизнесе: примеры и сервисы

Сервис: Google BigQuery + Alytics

Бизнес-задачи:

  • Рост конверсии внутри сайта;
  • Увеличение узнаваемости бренда онлайн;

  • Увеличение доли мультиканальных покупателей.

Способ: все данные были собраны в одном месте, на их основе по собственным параметрам были построены необходимые отчеты, затем полученные данные были переданы в Alytics для управления ставками.

Результат: показатель ROI вырос в нескольких категориях товаров до 17%. Показатели Email-рассылки продемонстрировали, что на 1 руб. онлайн-выручки приходится 4 руб. в оффлайне. Роль мультиканальных пользователей увеличилась, а 1/3 прибыли московских гипермаркетов приходятся на посетителей сайта Hoff.ru.

Кейс CarPrice

Как используются большие данные в бизнесе: примеры и сервисы

Сервис: Mail.ru Cloud Solutions

Бизнес-задачи:

  • Оптимизация расходов на трафик;
  • Увеличения скорости передачи контента.

Способы: все данные были собраны в одном месте, а оперативность службы поддержки позволяла быстро решить все технические вопросы и проблемы сервиса.

Результат: расходы на сервис сократились примерно в 4 раза, при этом возросло его качество. Пользователи благодаря быстрой загрузке контента сократили время на принятие решений.

Кейс Zarina

Как используются большие данные в бизнесе: примеры и сервисы

Сервис: RetailRocket

Бизнес-задачи:

  • Персонализация разделов сайта интернет-магазина;
  • Создание персонализированных рекомендаций дополнительных товаров.

Способы: на основе анализа больших данных были персонализированы рекомендации в категориях товаров, корзине, были созданы карточки товаров и персонализированы рекомендации в них.

Результат: выручка увеличилась более чем на 28%.

Кейс S7 Airlines

Как используются большие данные в бизнесе: примеры и сервисы

Сервис: Segmento

Бизнес-задачи:

  • Увеличение конверсий;
  • Снижение стоимости расходов на конверсии.

Способы: на основе больших данных были созданы персонализированные креативы. Накапливание информации позволило системе увеличить точность прогнозов.

Результат: увеличились в 2 раза конверсии (за тот же бюджет), при этом стоимость конверсии снизилась на 40 %.

Кейс AllTime.ru

Как используются большие данные в бизнесе: примеры и сервисы

Сервис: RetailRocket

Бизнес-задачи:

  • Увеличение интереса пользователей к карточкам товаров и странице поиска;

  • Создание разнообразных персонализированных предложений;

  • Увеличение вовлеченности пользователи, что должно привести к росту ключевых метрик.

Способы: на основе больших данных были созданы персонализированные карточки товаров, подобрано оптимальное расположение блоков, персонализированы страница поиска, рекомендации сопутствующих товаров.

Результат: каждое действие дало рост конверсии и прирост среднего чека:

  • Блоки рекомендаций: 3,1% (конверсия) + 1,5 (ср. чек) = рост выручки на 4,7%.

  • Сопутствующие товары: 2,4% (конверсия) + 10,6 (ср. чек) = рост выручки на 13,2%.

  • Поисковые рекомендации: 17,3% (конверсия) + 13,2% (ср. чек) = рост выручки на 32,7% .

Взгляд специалистов

Большие данные оказывают революционный эффект на бизнес, потому что современная бизнес-аналитика базируется на анализе big data. Например, в маркетинге и рекламе: клиентам могут быть направлены целевые офферы, которые соответствуют их же потребностям. Благодаря аналитике больших данных предложение бизнеса не вызывает у потребителя раздражение, потому что формируется на основе его предпочтений и прошлых покупок.

Илья Соломатин, Руководитель проектов цифровой экосистемы all.me

Нужно понять, что мы включаем в понятие «Большие Данные» с позиции бизнеса. Для нас, практиков, это прежде всего постулат, что идти нужно не от данных, а от решаемых задач. Сбор данных ради самих данных в отрыве от реальной потребности заводит в тупик. Мы видим перспективы от использования Big Data в области предсказательной аналитики, а также операционной аналитики (распределенная обработка данных, потоков и событий). В таком ключе Big data способны превратить «мёртвые» информационные терабайты данных компании в главный бизнес-актив.

Андрей Крехов, Заместитель директора по специальным программам ICL Services

Технологии больших данных способны перевернуть всю суть бизнеса и по-новому взглянуть на ситуацию на рынке. Например, выстроить новую модель продаж, как это сделала Kaeser Kompressoren, производитель сложных компрессоров. Благодаря анализу данных с датчиков на оборудовании компания создала новый подход к продажам: поставка сжатого воздуха вместо продаж самого оборудования. Поставка готового продукта сделала возможным закладывать более высокую маржу, чем при продаже самого оборудования. Kaeser Kompressoren получила контролируемый постоянный денежный поток и зарабатывает больше на поставке кубометров сжатого воздуха.

Юрий Бондарь, Заместитель генерального директора SAP CIS

Наличие больших массивов информации ни в одной компании не гарантирует их ценности, если на их основе не будут приняты стратегические решения.

Какие шаги подготовки предпринять для проекта по big data?

1. Определить проблему;

2. Оценить стоимость использования Big Data: з/п специалистов, затраты на сервера;

3. Поставить KPI на проект;

4. Посчитать ROI на использование Big Data.

Елена Герасимова, Руководитель направления Data Science в «Нетологии»

Цифры из практики

Сервисы на основе больших данных могут существенно сэкономить рабочее время сотрудников, занятых в выполнении рутинных операций. Например, время на заведение бумажных ТТН сокращается примерно в 3 раза, и это ежедневные операции. Процесс заведения нового товара в каталог позволяет экономить минимум 50% времени операциониста.

Раис Хальфиев, Эксперт компании СКБ Контур

Внедрение анализа больших данных увеличивает средний чек на 7-15% и серьезно влияет на возвратность потребителя (частоту посещения магазина).

Денис Царев, Генеральный директор Моризо Диджитал

Разберем применение больших данных на примере компании «Утконос». «Утконос» создает автоматизированные и триггерные маркетинговые кампании по различным каналам с возможностью получения аналитических данных. В результате использования технологии рост доходов по e-mail каналу составил 41%, а по sms — 8 %, причем количество заказов увеличилось на 2%. А в канале Viber на 18% увеличилась конверсия в покупку. Что касается больших данных в сфере производства — их применение повышают эффективность оборудования на 5-10%.

Юрий Бондарь, Заместитель генерального директора SAP CIS

Что в итоге?

Анализ Big Data разрешает следующие бизнес-задачи:

  • Составление более детализированного портрета ЦА и клиента, сбор информации о причинах оттока посетителей, сегментирование клиентов;
  • Персонализация предложений, оптимизация таргетинга;

  • Создание единой актуальной базы данных с вычислением ошибок и нахождением связей;
  • Сбор информации о пользе продукта и его безопасности;
  • Расчет рисков, борьба с мошенничеством (например, в банковской сфере);

  • Оптимизация логистики, использования оборудования, выявление качества сервиса;

  • Обеспечение более упорядоченного и дешевого метода хранения данных с возможностью составить отчет по нужным параметрам.

Использование больших данных в большей степени влияет на маркетинг, сервис, устранение «слабых» звеньев в производстве, выявление множества зависимостей при продаже продукта или услуги.

Практика показывает, что большие данные можно использовать эффективно (и даже очень), но их интеграция — это не волшебная таблетка, превращающая любой проект в прибыльное дело. Нужно понять, как большие данные помогут конкретно вам.

22
реклама
разместить
3 комментария

Последний абзац ,надо было поместить в самое начало статьи.
Подскажите пожалуйста(может я и не заметил) где написано про стоимость внедрения big data?

Про решения для малого и среднего бизнеса нет ни слова, как и по стоимость.

Я думаю большие данные могут увеличить прибыль бизнеса. Причем многие предприниматели с которыми я говорил. Думали, что big-data это только для больших компаний. — НО это не так. Для обычного малого и среднего бизнеса эта технология тоже применима. В моем опыте большие данные дали ответы на важные вопросы в компаниях например: 
— Когда лучше информировать о новых продуктах?
— Как количество пунктов в голосовом меню сказывается на продажах?
—Как улучшить качество техподдержки?
Более подробно написал в своей статью, кому интересно переходите https://interlogika.ru/kak-bolshie-dannye-mogut-uvelichit-pribyl-vashego-biznesa/ 

Apple представила MacBook Air на чипе M4 и по цене от $999

У него обновлённая камера Center Stage на 12 Мп.

Источник здесь и далее: Apple
5252
1616
55
11
На лет 10 точно хватит, говорю как пользователь про версии 2014 года - до сих пор юзаю
реклама
разместить
ЦБ начал обсуждать идею ввести «разумное» ограничение на количество оформленных на человека банковских карт

Например — до пяти карт в одном банке.

2626
1515
1010
22
Думаю, нужен реестр
Как мы вернули клиенту почти 1,5 млн рублей от недобросовестного поставщика
Как мы вернули клиенту почти 1,5 млн рублей от недобросовестного поставщика

При заказе партии товара из Китая порой возникают самые неожиданные сложности: даже если товар был проверен и клиент согласовал фотоотчет перед отправкой в Россию. Рассказываем, как мы полностью вернули клиенту деньги за новые блоки питания, напичканные старыми запчастями. Да, мы можем и такое!

22
Telegram-каналы рассказали про «Учёт надоя» — это замаскированное iOS-приложение «Россельхозбанка»

Официально в банке информацию не комментировали.

Обновлено в 16:00 мск. В пресс-службе «Россельхозбанка» подтвердили vc.ru, что «Учёт надоя» — новое iOS-приложение банка. Ранее установленные iOS-приложения работают как обычно — банк рекомендует отключить автообновления и не удалять их.

3636
33
11
Что-то на сверхдержавном...
В Telegram-каналах распространили информацию о закрытии действующей кредитной карты клиента «Т-Банка» из-за подключения самозапрета на кредиты — в банке это опровергли

Под закрытие могут попасть только неактивированные кредитки — по которым не проводилось расходных операций, пояснили в компании.

Скриншот из Telegram-канала «Банкста» 
2020
Здравствуйте. Мы не закрываем кредитные карты, если клиент активно ей пользуется. Можем это сделать, если клиент подписал документы, а затем установил самозапрет. В соответствии с Условиями обслуживания, кредитный договор заключаем не во время подписания документов, а в момент активации кредитной карты или совершения первой операций по ней.
Власти не будут использовать геолокацию, чтобы автоматически определять налоговое резидентство россиян

Но данные могут стать поводом для проверки.

2525
11
Когда с VPN стал резидентом всех стран 😎
новости от OpenAI! GPT 4.5 для всех!
новости от OpenAI! GPT 4.5 для всех!

Plus-подписчикам начали выдавать доступ к модели GPT-4.5, но не всем сразу – запуск планируется в течение 1–3 дней.

11
За какой кэшбек с рекламы можно присесть на 6 лет

Все пароли и явки сдали в статье.

За какой кэшбек с рекламы можно присесть на 6 лет
4141
1616
44
[]