Ын считает, что развитие машинного обучения можно ускорить, если процесс станет ориентироваться на обработку данных, а не на создание моделей. В основе традиционного ПО лежит код, а системы ИИ создаются из данных и кода, принимающего форму моделей и алгоритмов. «Когда производительность системы низка, многие команды инстинктивно стремятся улучшить код. Но во многих практических сферах применения эффективнее сосредоточиться на совершенствовании данных», — говорит Ын. Считается, что 80% машинного обучения — это очистка данных. «Если 80% нашей работы — это подготовка данных, почему мы не думаем, что обеспечение качества данных — самое важное для команды, занимающейся машинным обучением?»