Семь ошибочных парадигм в управлении цепью поставок

Специалист по теории ограничений Мартин Пауэлл — о главных заблуждениях менеджеров, управляющих запасами.

Семь ошибочных парадигм в управлении цепью поставок

1. Цена и наценка за единицу товара — наиболее важные факторы для принятия решений о покупке и продаже

Независимо от того, как мы ведём учёт в наших компаниях, в цепях поставок и дистрибуции в действительности никто ничего не продал, пока не продано последнее звено. Это означает, что поставщики сырья, материалов и компонентов, производители, оптовые торговцы, дистрибьюторы или розничные магазины — никто из них на самом деле не продал, пока не купил конечный потребитель.

Поэтому между звеньями цепи происходит множество сделок и соглашений по покупке и продаже. Власть чаще находится в руках звена, которое покупает, поскольку у него обычно есть сравнительно больше альтернатив или возможностей в том, где, когда и сколько купить.

Так как работа покупателей (закупщиков) оценивается по ряду показателей, неудивительно, что фокус оказывается на цене за единицу товара, наценке, прибыли. В этой парадигме цены за единицу товара столько паранойи, что другие более важные факторы могут легко быть проигнорированы. Давайте рассмотрим несколько примеров.

Производитель автомобилей повышенной комфортности обеспокоен прибылью, которую он получает за свои автомобили. Когда дело доходит до конкретных решений о покупке новых деталей для новой модели, они обычно поступают так. Они предсказывают, что им потребуется всего 1000 штук определённых деталей в течение каждого из следующих четырёх лет.

У них есть выбор — произвести эту деталь из пластмассы или из металла. В пластмассе себестоимость единицы продукции за одну деталь составит $1,5 вместе со стоимостью формы — $20 тысяч (срок изготовления формы и партии деталей — 20 недель). Стоимость альтернативы — детали из металла — составит $5 за штуку (срок изготовления — неделя, так как форма не требуется).

Если принимать решение на основе ROI, скорости движения денежных средств, гибкости для возможности изменения спецификации или количества деталей, скорости поставки деталей или общих затрат на их приобретение, разумно выбрать металлический вариант. Однако когда весь процесс покупки и рассмотрения вариантов управляется лишь одним показателем — стоимостью за единицу детали, производитель выбирает пластмассу.

В другом примере европейская компания, поставляющая сумки в розничные сети, покупает застёжки в Китае, а не у местного поставщика, потому что застёжки из Китая обходятся дешевле. Время выполнения заказа в Китае (производство и доставка) составляет 12 недель.

В течение двух недель с начала сезона продаж (который длится приблизительно 12 недель) ритейлеры продали 70% от прогнозируемого объёма сумок одной модели. Нужно было бы пополнить запасы этой модели, но очевидно, что поставщик не успеет это сделать до конца сезона. Розничная сеть в конечном счёте также потеряет продажи без этой популярной модели.

Мы все, вероятно, сможем привести свои примеры, когда фокус на цене за единицу товара, скидке, наценке приводил к смене поставщика, что вызывало проблемы с качеством, нарушением сроков поставки или доступностью товара на складе.

Очевидно, что этот показатель не всегда является единственно важным фактором. Что толку, если товар имеет лучшую цену за единицу, но его нет в наличии?

2. Продажи, потерянные из-за отсутствия товара на складе, составляют не больше 3-5%

Здесь я приведу выдержки из внутреннего документа Голдратта «История Большого бренда», записанного Эли Голдраттом после семинара с одной многомиллиардной компанией, известной по бренду S.

Сначала я спросил, сколько продаж потеряно в магазинах из-за отсутствия товара. В отличие от многих других розничных продавцов, имеющих наготове стандартный ответ: «Упущенные продажи минимальны», приблизительно 2-3%, здесь мне ответили, что потери примерно 30%.

Я уверен, что если бы этот вопрос был задан раньше, до начала внедрения теории ограничений в этой компании, я получил бы стандартный ответ. Но они уже успели проверить, сколько из SKU, предположительно имеющихся в магазине, действительно сейчас доступны.

И они узнали, что приблизительно 30% SKU отсутствуют в магазине. Тогда они сделали вывод, что потерянные продажи должны быть несколько меньше этих 30%.

Потому что иногда (часто) клиент, который не может найти один конкретный продукт, всё равно купит продукт-заменитель. Поэтому они расценили 30% как некоторый реалистичный верхний предел.

Почему ритейлеры верят в незначительность потерянных продаж, прежде чем они услышат о TOC? Почему они столько слепы к реальной величине потерь? Ответьте на эти вопросы:

  • Если клиенты не находят товар, который они ищут, всегда они спросят его?
  • Даже если клиенты просят отсутствующий товар, всегда ли продавец сообщает руководству об этом?
  • Даже когда склад сообщает об отсутствие товара, всегда ли этот отчёт регистрируется в системе?
  • Всегда ли отсутствие товара на складе рассматривается как упущенные продажи?
  • Можете ли вы достаточно точно оценить упущенные продажи товара, которого нет на складе?

Простой факт — никто не может дать точный ответ. Поэтому мы должны мыслить логически. Если на складе нет запаса SKU, которые, как предполагается, там должны быть, мы должны считать их дефицитом. Логично, если есть дефицит, тогда должны быть и некие «упущенные продажи».

Если система управляется прогнозом и у вас на складе отсутствуют некоторые SKU, это означает, что вы продали их больше, чем было предсказано. Если при этом сезон только начался, вы, должно быть, продали намного больше.

Это означает, что отсутствующие на складе SKU являются ходовыми. Многие ритейлеры рассматривают ситуацию с распроданными запасами как успех. Это ошибочная парадигма, потому что в действительности чем быстрее вы выходите из продаж, тем больше вы фактически теряете из-за неправильного прогноза.

3. Более точное прогнозирование — ключ к лучшим результатам

Все прогнозы — лишь предположения. Это попытки предсказать будущее. Логично, что чем отдалённее будущее, тем больше возможностей для естественных вариаций. Чем точнее вы пытаетесь сделать прогноз, тем больше он подвержен влиянию вариаций.

К примеру, предположим, что вы должны сегодня сделать прогноз: как точно вы можете предсказать, на каком месте футбольный клуб «Манчестер Юнайтед» закончит сезон 2014-2015 годов премьер-лиги (в мае 2015 года)? Как точно вы можете предсказать, сколько очков они заработают к концу сезона? Как точно вы можете предсказать счёт, с которым они сыграют с Суонси в декабре 2014 года? Как точно вы можете предсказать минуты забитых голов в этой игре?

Невозможно? Если бы это было возможно, то отрасль спортивных тотализаторов давно обанкротилась бы. Но она, конечно, процветает. Однако если послушать некоторых «экспертов» в цепях поставок, они скажут вам, что имея достаточно много данных и достаточно мощный компьютер, они могут создать для вас алгоритм, который будет предсказывать довольно точно ваши будущие продажи на 6-12 месяцев вперёд и даже больше, на уровне отдельных SKU.

Любой прогноз хорош настолько, насколько хороши предположения, на которых он построен. Любой менеджер по дистрибуции, который верит прогнозу, фактически играет на тотализаторе и, вероятно, обречён потерять свои деньги. Вариации всё равно уничтожат вас.

Единственный способ победить вариации состоит в том, чтобы сократить период прогноза, поддерживать буфер как защиту от вариаций и научиться пополнять его быстрее и чаще.

4. Время пополнения не может быть значительно уменьшено

Время пополнения представляет собой время выполнения заказа с момента, когда материал или продукт был использован или куплен, до момента, пока он вновь станет доступен покупателю. Если при пополнении вы зависите от поставщиков или смежников, значит, вы не можете контролировать время выполнения заказа. Давайте рассмотрим пример.

Пусть вы покупатель, а время пополнения, как определено выше, для определённой детали составляет 10 недель. Если мы исследуем это время, то увидим, что оно состоит из трёх элементов:

  • время заказа (покупателем) — четыре недели;
  • время производства (поставщиком) — пять недель;
  • время доставки (транспортниками) — одна неделя.

Покупатели размещают заказы на эту деталь только один раз в месяц, потому что они заказывают ещё множество разных деталей и хотят как-то упорядочить свои заказы. И это даёт нам «время заказа». Таким образом, с момента использования или потребления детали до момента, когда вы делаете повторный заказ, может пройти максимум четыре недели. И это время находится под вашим полным контролем.

Если вы увеличите частоту заказов до одного раза в неделю, время пополнения составит всего семь недель. И запасы, необходимые для обеспечения доступности детали, будут на 30% меньше. И да, это означает 30% сокращение оборотного капитала на запасах нашей детали.

Мы можем пойти ещё дальше, потому что время выполнения заказа поставщиком (время производства) фактически состоит из двух элементов: три недели — собственно производственное время выполнения заказа и две недели ожидания в очереди на запуск в производство.

Это даёт нам некоторый шанс договориться с поставщиком о предоставлении приоритета нашим заказам взамен некоторых преимуществ для него (больше деталей, более высокая цена и так далее). Если мы сможем договориться с поставщиком, тогда мы сэкономим ещё две недели и достигнем уже 50% сокращения оборотного капитала на этой детали.

5. Мы должны хранить запасы максимально близко к потребителю

Это кажется вполне разумным на первый взгляд, но из-за проблемы неточности прогнозов это предположение снова ошибочно. Система, управляемая по прогнозам, определит, что продажи почти одинаково вероятны в каждом магазине и каждом регионе.

Затем система обеспечит или произведёт все SKU и «вытолкнет» их вниз по цепи поставок к локальным складам. Никто не хочет хранить продукты на заводе или в начале цепи, потому что они «слишком далеки» от клиента. Однако свойственная погрешность прогноза означает, что продажи в магазинах и следовательно на локальных складах не соответствуют прогнозу.

Результат: на локальном складе слишком большие запасы одних SKU и одновременно дефицит других SKU — дисбаланс может быть значительным. А на другом локальном складе ситуация с запасами этих SKU может быть прямо противоположной.

Наверняка вам приходилось слышать: «Извините, но у нас нет этого товара в наличии. Но я вижу в нашей системе, что он есть на складе XYZ в 50 км отсюда. И мы можем доставить его вам к четвергу». Отлично, у этой компании есть система встречных перевозок — но какой ценой?

У Tеории ограничений есть решение: хранить запасы не в цепи поставок, а на складе производителя, и поставлять его к следующему узлу цепи исключительно на основе реального потребления в этом узле — то есть истинная вытягивающая система поставок. По реальному опыту компаний, увеличение затрат на содержание склада производителя перекрываются за счёт сокращения запасов в цепи поставок и увеличения продаж благодаря лучшей доступности товара.

6. Частота доставок должна основываться на транспортных расходах

Распространённое мнение: мы не можем работать с наполовину загруженными фурами или полупустыми контейнерами, поэтому мы должны перевозить продукты в больших количествах. Работа с большими партиями увеличивает время выполнения заказа и оборотный капитал для поддержания запасов на время пополнения.

Это приводит одновременно к избыточным запасам одних продуктов и потерянным продажам других. Такое отрицательное влияние часто перевешивает увеличение транспортных расходов, если подойти к проблеме должным образом — с акцентом на скорость потока, а не на затраты.

При использовании подхода TOC ассортимент продуктов в одной отгрузке значительно больше, несмотря на то, что суммарный объём ненамного меньше. У нас всё ещё могут быть полные грузовики или полные контейнеры, но они составлены из многих продуктов, а не одного или нескольких. На этой основе может быть увеличена частота пополнения для каждого продукта, так как мы перемещаем тот продукт, который продаётся, а не пылится в узлах цепи.

7. Расставлять приоритеты заказов лучше всего локально в каждом звене цепи поставок

Если мы рассматриваем цепь поставок, состоящую из завода, склада завода, региональных складов, дистрибьюторов и магазинов, как в действительности каждое звено цепи выбирает, какому из заказов, текущих через систему, отдать приоритет? Как дистрибьютор решает, какой магазин получит приоритет? Как завод решает, какой дистрибьютор приоритетнее?

Обычно решение основывается на некоторых локальных показателях, которые устанавливаются и достигаются в отдельных звеньях локально. Но, как упомянуто выше, пока конечный покупатель не купил, никто в цепи в действительности не продал.

Мы должны признать, что цель всей цепи поставок состоит в том, чтобы обеспечить максимальные продажи конечному потребителю. Это будет достигнуто, если нужные продукты доступны в нужное время, в нужном месте и нужном количестве.

Фактически приоритеты должны быть установлены глобально во всей цепи на основе доступности, что означает при внедрении TOC — на основе статуса буферов в следующем узле цепи ниже по течению.

Приоритеты должны управляться состоянием складских буферов завода (синий — излишний запас, зелёный — большой запас, жёлтый — нормальный запас, красный — низкий запас, чёрный — отсутствует на складе). Синий буфер используют не всегда.

Последовательно приоритеты для склада завода поступают из буферов региональных складов и для региональных складов — от дистрибьюторов и так далее вниз по цепи. Это и есть истинная вытягивающая система с единственной устойчивой глобальной системой приоритетов.

Материал предоставлен Tocpeople.com.

33
12 комментариев

Спасибо, очень интересно!

Пожалуйста, пользуйтесь.

1

Кто должен заниматься подобной аналитикой в компании? Или это делает какое-то определённое ПО?

Специализированное ПО для управления запасами по Теории ограничений, безусловно, существует. Оно берет на себя львиную часть работы. Научить простым правилам работы с ним можно любого менеджера по закупкам. Но вы должны понимать, для того, чтобы установить ПО и начать работать с ним, вам придется:
1. на уровне высшего руководства принять и продвигать этот новый поход, потому что в нем есть вещи, ломающие стереотипы.
2. преодолеть сопротивление сотрудников, которые будут пытаться работать по старинке.
Ну и для настройки и первоначального сопровождения наверняка придется привлечь специалистов. Но оно того стоит.

1

3. И, возможно, еще придется убедить в преимуществах подхода ваших поставщиков и/или покупателей.

и босса

Если говорить о ВЭД , то стоимость доставки/таможни чаще всего мешает непрерывности доставки.

К примеру, в РФ, некоторые товары выгодно отправлять поездами. То есть, вы должны накопить поезд (~60 вагонов) и отправлять его.