«Машины не могут работать там, где нет данных»: какие профессии в будущем не заменят роботы

Энтони Голдблум, основатель компании Kaggle, специализирующейся на работе с большими объёмами данных и data science, прочитал лекцию на мероприятии TED — о том, какие профессии в будущем не окажутся заменены роботами и технологиями.

Редакция vc.ru публикует конспект выступления.

«Машины не могут работать там, где нет данных»: какие профессии в будущем не заменят роботы

«У меня есть племянница, которую зовут Яли. Сейчас ей девять месяцев. Мать Яли — врач, а отец работает адвокатом. К тому времени, как Яли пойдет в колледж, работа её родителей значительно изменится», — говорит Голдблум.

В 2013 году, продолжает предприниматель, ученые из Оксфордского университета провели исследование, в ходе которого выяснили, что специалисты каждой второй профессии рискуют в будущем оказаться полностью замененными роботами или другими специальными технологиями. Большинство из них будут заменены технологиями, использующими алгоритмы машинного обучения, утверждают исследователи.

«Машинное обучение — одна из самых мощных областей в развитии искусственного интеллекта. Такие технологии исследуют большие объёмы данных, обучаются на них и становятся способны частично имитировать человеческую деятельность, самостоятельно принимать решения. Моя компания работает как раз в этой отрасли. Мы общаемся с сотнями специалистов в этой области, и нам есть что сказать о том, что умеют и не умеют делать машины, каких специалистов они смогут заменить», — продолжает автор доклада.

Алгоритмы машинного обучения начали применяться в промышленности в начале 90-х годов, говорит Голдблум. Изначально они решали несложные задачи вроде оценки кредитных рисков по заявке, сортировки электронной почты и так далее. В последние несколько лет индустрия переживает стремительный рост.

«В 2012 году наша компания разработала алгоритм, который мог оценивать эссе учеников средней школы. В 2015 году мы создали алгоритм, который смог распознавать заболевание диабетическая ретинопатия по снимку человеческого глаза. Диагнозы совпали с диагнозами врачей-офтальмологов», — делится Голдблум.

У машин есть возможность обойти людей в таких областях — если дать им соответствующие данные. Учитель за всю свою жизнь может прочитать 40 тысяч эссе. Офтальмолог — осмотреть 50 тысяч пар глаз. Машина прочитает миллионы эссе и проанализирует миллионы пар глаз за несколько минут.

«У нас нет шансов конкурировать с машинами в тех областях, где для принятия решения нужно изучить большой объём данных», — утверждает автор выступления.

Но есть, по словам Голдблума, вещи, которые машинам не под силу. Это принятие решений в областях, где можно полагаться только на небольшой объём данных. Для успешной работы алгоритмов машинного обучения им нужна большая база знаний. «Там, где имеется только несколько, казалось бы, несопоставимых фактов, машины теряются и не могут сделать ничего принципиально нового».

В качестве примера автор доклада приводит американского инженера Перси Спенсера. Во времена второй мировой войны Спенсер как-то обратил внимание на то, что его шоколадка, лежавшая недалеко от лампы-магнетрона, расплавилась. Так к Спенсеру пришла идея создания микроволновой печи. «Машины не могут конкурировать с нами в областях, где требуются принципиально новые решения. На самом деле, человек принимает такие решения, хоть и в меньших масштабах, тысячи раз в день».

«Таким образом, будущее любой профессии сводится к вопросу: как часто специалистам приходится принимать решения, основываясь на больших объёмах данных и внушительном опыте, а как часто от них требуется нечто принципиально новое», — объясняет предприниматель.

В ближайшие несколько лет, полагает Голдблум, машины смогут заниматься аудитом и некоторыми шаблонными юридическим вопросами. Однако они по-прежнему не будут способны проводить комплексное налоговое структурирование и решать другие вопросы. Работу в области бухгалтерского учёта и юриспруденции всё ещё можно будет найти — просто её станет меньше.

«Машины не смогут заниматься маркетингом — для этого необходимо находить новые решения. Бизнес в значительной степени предполагает поиск новых ниш на рынке, и это тоже не под силу машине. Бизнес-стратегии, маркетинговые кампании — этим будут и дальше заниматься люди», — заключает предприниматель.

Так что, Яли, какой бы путь ты ни выбрала, пусть каждый день приносит тебе новые вызовы. И тогда ты всегда будешь впереди машин.

13 комментариев

Предприниматель сделал вывод, что машины тронут других, но не предпринимателей. Больше похоже на публичную демонстрацию своих страхов.

7
Ответить

Сама суть нашего бытия это переход от органики к более живучей форме. Эволюция дала нам разум и тело по факту для того, что бы мы построили следующий веток. Так, что бояться не стоит, переход в железо просто неизбежен и эт к лучшему

4
Ответить

Надеюсь, машины справятся с правописанием и пунктуацией лучше нас.

12
Ответить

Всё они смогут. Вся жизнь людей - это просто куча данных, которые роботы будут агрегировать, скорее всего в облаках. Так что это лишь вопрос времени. Ну и люди им в этом помогут :)

8
Ответить

Комментарий недоступен

1
Ответить

Как успехи в порабощении?

9
Ответить

Комментарий недоступен

1
Ответить