Бизнес собирает петабайты данных для использования в Data Science проектах, но это не гарантирует прибыль. Единого понимания, как работать с ML-приложениями, еще нет, хотя у многих компаний есть обнадеживающие пилоты и удачные эксперименты, превратить их в стабильную ценность для бизнеса не всегда получается и многие компании не могут превратить обнадеживающие пилоты и удачные эксперименты в стабильную ценность для бизнеса. Причина — не изъяны технологий ML, и даже не слабая квалификация специалистов, а отсутствие проторенной дороги от среды экспериментов в промышленную эксплуатацию (как вариант — “от теста в продакшн”). Концепция MLOps такую дорогу прокладывает операционализацией работы с моделями, систематизацией внедрения и автоматизацией всего что только можно в жизненном цикле моделей.